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Abstract

Introduction: After traumatic nerve injury, neuromuscular junction remodeling plays

a key role in determining functional outcomes. Immunohistochemical analyses of

denervated muscle biopsies may provide valuable prognostic data regarding clinical

outcomes to supplement electrodiagnostic studies.

Methods: We performed biopsies on nonfunctioning deltoid muscles in two patients

after gunshot wounds and visualized the neuromuscular junctions using two-photon

microscopy with immunohistochemistry.

Results: Although the nerves in both patients showed evidence of acute Wallerian

degeneration, some of the motor endplates were intact but exhibited significantly

decreased surface area and volume. Both patients exhibited substantial recovery of

motor function over several weeks postinjury.

Discussion: Two-photon microscopic assessment of neuromuscular junction integrity

and motor endplate morphometry in muscle biopsies provided evidence of partial

sparing of muscle innervation. This finding supported the clinical judgment that even-

tual recovery would occur. With further study, this technique may help to guide

operative decisionmaking after traumatic nerve injuries.

K E YWORD S

brachial plexus injury, gunshot wound, motor endplate, neuromuscular junction, traumatic

nerve injury

1 | INTRODUCTION

After brachial plexus injuries (BPIs), some patients have spontane-

ous recovery, whereas others require surgical intervention to

improve their functional outcome.1,2 Formulating diagnostic

criteria to identify patients who may benefit from surgery is a

high priority. Magnetic resonance imaging and ultrasound are

both useful for identifying damaged nerves preoperatively, but

they cannot predict regeneration potential,3-5 which depends on

the viability of the motor endplate (MEP) within targeted muscle

fibers.6
Abbreviations: BPI, brachial plexus injury; H&E, hematoxylin and eosin; MEP, motor

endplate; MRC, Medical Research Council; NF, neurofilament; NMJ, neuromuscular junction.
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Without definitive diagnosis of nerve transection and with an

inability to track viability of the neuromuscular junction (NMJ), many

surgeons delay surgery to assess spontaneous recovery and avoid

unnecessary or potentially detrimental procedures.7 As human

nerves grow at a rate of ~1 mm/day, it often requires months before

clinical signs of regeneration are apparent.8 However, late surgical

intervention risks irreversible degradation of the target end-organ,

thus missing the critical window during which functional recovery is

achievable.9,10

To develop tools for predicting spontaneous neuromuscular

recovery, there is a crucial need for a deeper understanding of the

fate of human MEPs after denervation. Animal models predict that

partial preservation of the NMJ may be a useful prognostic indica-

tor for eventual nerve regeneration. Such information could be

especially valuable if comprised of quantitative morphometric mea-

sures of NMJ remodeling. Given the lack of human data in this

area, we describe an approach to visualize NMJs in muscle

biopsies.

2 | METHODS

2.1 | Case reports

Two young, healthy males, ages 26 and 23 years, sustained similar

gunshot wounds to the right upper extremity within minutes of each

other during a mass casualty incident. Both patients had BPIs,

including complete motor and sensory loss in the right axillary nerve

distribution without transection injury, and required standard-of-

care surgery to address their bony injuries where the deltoid muscle

was readily accessible. After receiving institutional review board

approval and obtaining informed consent, the right deltoid muscle

was biopsied in these patients at 3 weeks and 5 months, respec-

tively, allowing comparison with a control deltoid biopsy from

another subject undergoing upper extremity surgery unrelated to a

nerve injury.

2.2 | Muscle processing and analysis

Muscle samples were fixed in 4% paraformaldehyde, separated into

longitudinal whole mounts,11 and immunostained with antibodies to

NMJ components as follows: 1) α-bungarotoxin (Alexa Fluor 594 conju-

gate; 1/1000; ThermoFisher Scientific) to label nicotinic acetylcholine

receptors; 2) synaptophysin to label presynaptic vesicles (mouse anti-

human synaptophysin; 1/250; Dako); and 3) neurofilament (NF) to label

axons (mouse anti-human NF; 1/300; Covance). Secondary antibodies

were conjugated to donkey anti-mouse Alexa Fluor 488 (1/300;

ThermoFisher Scientific). Two-photon images were acquired with a 3i

system (Intelligent Imaging Innovations) with an 810-nm laser and Zeiss

20x/0.8 water immersion objective. Three-dimensional reconstructions

were created (Volocity, Perkin Elmer). MEP surface area/volume were

quantified using ImageJ (National Institutes of Health) with the 3D

Object Counter plug-in using the optical fractionator method.

TABLE 1A Patient 1: Sensory nerve conduction data

Nerve Recording site Peak latency (ms) Amplitude (μV) Velocity (m/s) Normal values

Right median Peak latency 3.5 ms,
amplitude 20 μVWrist Digit II No response No response No response

Right ulnar Peak latency 3.1 ms,
amplitude 17 μVWrist Digit V No response No response No response

Right radial Peak latency 2.9 ms,
amplitude 15 μVForearm Wrist No response No response No response

TABLE 1B Patient 1: Motor nerve conduction data

Nerve Muscle Latency (ms) Amplitude (mV) Velocity (m/s) Normal values

Right median Distal latency 4.4 ms, amplitude
4.0 mV, velocity 50 m/sWrist APB No response No response No response

Right ulnar Distal latency 3.3 ms, amplitude
6.0 mV, velocity 50 m/sWrist ADM 3.44 1.3

Below elbow ADM 7.71 1.3 56

Above elbow ADM 8.91 1.3 75

Right radial Amplitude 2.0 mV, velocity 50 m/s

Forearm EIP 9.38 0.2

Elbow EIP 10.36 0.2 76

Arm EIP 12.71 0.2 47

Abbreviations: ADM, abductor digiti minimi; APB, abductor pollicis brevis; EIP, extensor indicis proprius.
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Hematoxylin-and-eosin (H&E) staining was used to visualize muscle

fiber architecture in transverse cryosections of fresh frozen muscle.

3 | RESULTS

Electrodiagnostic studies were performed on patients 1 and 2 at

4 weeks after injury, demonstrating indicating deficits in the distribu-

tion of the right median, ulnar, radial, and axillary nerves in patient

1 (Tables 1A-C), and in the right axillary and radial nerve distributions

in patient 2 (Table 2A-C).

On H&E staining (Figure 1), patient 1 demonstrated highly vari-

able muscle fiber diameters with diffuse, dense cellular infiltrate

throughout the specimen, consistent with early myofiber regenera-

tion. In contrast, patient 2 demonstrated uniform fiber diameters, indi-

cating normal muscle morphology. Neither specimen exhibited

changes typical of late-stage muscle injury (adipocyte infiltration or

collagen deposition).

The deltoid biopsy from patient 1 (3 weeks postinjury) showed

extensive neurofilament debris scattered throughout the field com-

pared with the control specimen, indicating active Wallerian

degeneration (Figure 1E). The biopsy from patient 2 (5 months

TABLE 1C Patient 1: Electromyography data

Spontaneous Volitional MUAPs

Muscle Fibs/PSW Fasciculations Duration Amplitude Recruitment

Right abductor digit minimi 1+ None Normal Normal Moderately decreased

Right extensor digitorum communis 3+ None Normal Normal Markedly decreased

Right triceps brachii 1+ None Normal Normal Moderately decreased

Right deltoid None None Normal Normal Mildly decreased

Right biceps brachii None None Normal Normal Mildly decreased

Right abductor pollicis brevis None None No motor units No motor units

Abbreviations: ADM, abductor digiti minimi; APB, abductor pollicis brevis; EIP, extensor indicis proprius; Fibs/PSW, fibrillation potentials/positive sharp
waves; MUAP, motor unit action potential.

TABLE 2A Patient 2: Sensory nerve conduction data

Nerve Recording site Peak latency (ms) Amplitude (μV) Velocity (m/s) Normal values

Right median Peak latency 3.5 ms, amplitude 20 μV

Wrist Digit II 3.13 52.2 71

Right ulnar Peak latency 3.1 ms, amplitude 17 μV

Wrist Digit V 2.97 31.3 49

Right radial Peak latency 2.9 ms, amplitude 15 μV

Forearm Wrist 2.03 6.5 69

Left radial Peak latency 2.9 ms, amplitude 15 μV

Forearm Wrist 2.14 22.5 62

TABLE 2B Patient 2: Motor nerve conduction data

Nerve Muscle Latency (ms) Amplitude (mV) Velocity (m/s) Normal values

Right median Distal latency 4.4 ms, amplitude
4.0 mV, velocity 50 m/sWrist APB 3.54 10.0

Elbow APB 7.60 9.7 54

Right ulnar Distal latency 3.3 ms, amplitude
6.0 mV, velocity 50 m/sWrist ADM 2.40 13.0

Below elbow ADM 6.35 12.6 58

Above elbow ADM 8.39 11.9 54

Right radial Amplitude 2.0 mV, velocity 50 m/s

Forearm EIP No response No response No response

Abbreviations: ADM, abductor digiti minimi; APB, abductor pollicis brevis; EIP, extensor indicis proprius; Fibs/PSW, fibrillation potentials/positive sharp
waves; MUAP, motor unit action potential.
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postinjury) also showed neuronal debris, consistent with late

Wallerian degeneration. In both patients, the synaptophysin signal

was in contact with some, but not all, MEPs (white arrowheads in

Figure 1E-F). MEPs of both patients were grossly intact but

showed marked condensation with loss of infoldings compared

with controls, an 86% reduction of surface area (Figure 2), and

decreases in endplate volume of 53% and 49% for patients 1 and

2, respectively.

Patient 1 started to regain both motor and sensory functions in

the distribution of the axillary nerve at 6 months postinjury, and even-

tually regained function in all right upper extremity muscles. Patient

2 spontaneously regained deltoid muscle function (Medical Research

Council [MRC] to grade 3) at 6 months postinjury, eventually reaching

MRC grade 5 deltoid strength over the next year along with full radial

nerve function, including independent digital extension after nerve

transfers. These imaging data were not used to alter clinical

management.

4 | DISCUSSION

A crucial decision in management of traumatic BPI is whether to

perform surgical intervention. The two cases described herein pro-

vide insights into how human nerves and MEPs respond to gunshot-

induced BPI. The clinical course of both patients suggests that they

sustained a reversible neurapraxia secondary to ballistic shock

waves and subsequent soft-tissue swelling.12,13 At the time of clini-

cal presentation, electrodiagnosis and imaging could not distinguish

between a pressure wave injury and irreversible axillary nerve

damage.

There are animal data about the NMJ response to injury

focused on terminal Schwann cells as well as molecular changes to

the MEP, including the dispersion of acetycholine receptors.14-18

Long-term denervation is accompanied by devolution of the MEP

morphology from a mature “pretzel-like” appearance (perforated

with membranous infoldings) toward an immature plaque

TABLE 2C Patient 2: Electromyography data

Spontaneous Volitional MUAPs

Muscle Fibs/PSW Fasciculations Duration Amplitude Recruitment

Right triceps brachii 2+ None Normal Normal Moderately decreased

Right brachioradialis None None Rare motor units Markedly decreased

Right extensor indicis proprius 3+ None No motor units No motor units

Right deltoid 2+ None Normal Normal Reduced

Right biceps brachii None None Normal Normal Normal

Right first dorsal interosseous None None Normal Normal Normal

Abbreviations: Fibs/PSW, fibrillation potentials/ positive sharp waves; MUAP, motor unit action potential.

F IGURE 1 Deltoid muscle
biopsies stained for (A-C)
hematoxylin and eosin (scale
bar = 100 μm) and (D-F)
neuromuscular junction.
Red = α-bungarotoxin;
green = neurofilament and
synaptophysin. White arrowheads
denote direct contact of pre- and
postsynaptic elements [Color
figure can be viewed at
wileyonlinelibrary.com]
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(diminished size/increased density).11 This transition to a plaquelike

morphology is correlated with the critical time window beyond

which reinnervation and functional recovery is severely limited. We

used two-photon microscopy because it provides superior optical

sectioning in three-dimensional imaging of thick human specimens

when compared with standard confocal imaging.19-21 The deeper

penetration of two-photon excitation allows visualization and accu-

rate quantification of morphometric parameters.22,23 We observed

significant neurofilament and synaptophysin debris in patient

1, suggesting active Wallerian degeneration, as would be expected

3 weeks after traumatic nerve injury.24,25 MEP morphometric

changes were evident in both patients, including decreases in sur-

face area and volume, with increased density, consistent with the

change to a plaquelike phenotype seen in murine models of trau-

matic nerve injury.11,26 Taken together, these models show that

such changes are reversible.11

Understanding the nature and time-course of changes in MEPs

after nerve injury is critical to the development of an evidence-based

decision process. However, these changes have not been studied in

humans, and it is unknown whether the sequence of events and time-

course are accurately represented by animal models. Biopsy of bra-

chial plexus nerve fascicles has been undertaken for diagnosis of neu-

ropathological states, but biopsy of denervated muscles and

visualization of the MEPs has not been utilized.27 Thus, our approach

is a critical first step toward understanding these processes in humans.

An understanding of the nature and time-course of degeneration of

NMJs is also important for progressive neurodegenerative diseases.

Denervation without motor neuron loss has also been implicated in

the early stages of amyotrophic lateral sclerosis in both murine models

and humans.28 The late stages of chronic nerve compression have also

been shown in animal models to resemble the sequelae of traumatic

nerve injury.29,30

The major limitation of this preliminary study is its small sample

size, so we cannot draw definitive conclusions about the nature and

time-course of motor endplate remodeling or predict recovery and

outcomes. In addition, we were able to perform biopsies in these

patients because the muscle was easily accessible during surgical

exposure for unrelated standard-of-care operations. If a separate

procedure were required for muscle biopsy, the risks would have to

be weighed against the benefits. Taking these considerations into

account, our study has outlined a path for gathering evidence from

muscle biopsy to complement electrodiagnostic and imaging modali-

ties by precisely identifying the stages of NMJ degeneration in indi-

vidual patients before surgery with the goal of helping to predict

outcome.
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Abstract

Background: Adult-onset hereditary motor neuropathies are caused by mutations in

multiple genes. Mutations within the vaccinia-related kinase 1 (VRK1) gene were

associated with a wide spectrum of recessively inherited motor neuropathies, charac-

terized by childhood to early adulthood age of onset and an occasionally non-lower

motor neuron involvement.

Abbreviations: CADD, combined annotation dependent depletion; CMA, chromosomal

microarray analysis; CMAP, compound muscle action potential; CT, computed tomography;

dHMN, distal hereditary motor neuropathy; dSMA, distal spinal muscular atrophy; EMG,

electromyography; gnomAD, genome aggregation database; LRT, likelihood ratio test; MRI,

magnetic resonanace imaging; NCS, nerve conduction studies; PCR, polymerase chain

reaction; VRK1, vaccinia-related kinase 1; WES, whole-exome sequencing; WT, wild-type.
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