degeneration in the MRI studies. None of the
patients had cardiac or pulmonary involvement.
Muscle biopsies revealed nonspecific degenerative
myopathic changes and some scattered necrotic
fibers. Currently, there is no specific antibody
against anoctamin available. The c.191dupA muta-
tion in exon 5 is the most frequent mutation in the
families studied so far. Many patients were homozy-
gous for this mutation. In some patients, the muta-
tion was heterozygous in combination with another
variant on the other allele as in three of our
patientsf*_7 Moreover, it would appear that men are
more affected than women, which is also reflected
in the current literature.

In this report, we describe four additional
patients with novel mutations in the ANO5 gene.
We conclude that in patients with adult onset and
obviously autosomal recessive inherited muscular
dystrophy with very high CK levels screening for
ANO5 mutations is worthwhile.
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ABSTRACT: Introduction: This report is a meta-analysis of
the human muscle architecture literature that analyzes the num-
ber of muscles, number of subjects, and muscle fiber length
coefficient of variation (CV) by body region. Methods: Muscle
fiber length data are used to make recommendations for dissec-
tion-based architectural study sample sizes. Results: An aver-
age of 9 = 10 (mean = SD) muscles and an average of 9 = 5
subjects were reported in the 26 studies considered. Across all
studies, average fiber length CV was highly variable (18% = 5%).
This shows that sample sizes required to achieve adequate
power varies by anatomical region. Conclusions: Studies involv-
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ing muscle architecture should consider regional variability and
effect size and determine sample size accordingly.
Muscle Nerve 45: 742-745, 2012

Muscle architectural studies are used to describe
and predict skeletal muscle structure and function.
Human muscle architecture has been investigated
using a variety of methods including ultrasound,
magnetic resonance imaging (MRI), computed to-
mography (CT), histology, and dissection. While
imaging methods have the advantage of being non-
invasive and can be performed on living humans,
dissection studies provide the gold-standard method
of describing muscle architecture, because fiber
length at a known sarcomere length can be quanti-
fied.! While large sample sizes are desirable in dis-
section studies, lack of access to cadavers, cost, and
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technically challenging methodology often limit the
actual number of subjects reported per study. This
can result in underpowered, inaccurate studies if
variability is high between humans or between
muscles of different anatomical areas. This can have
significant clinical impact if these numbers are then
used to create models that impact surgical decisions.

The purpose of this study was to identify all of
the human muscle architecture studies in the liter-
ature, determine their sample sizes, quantify fiber
length coefficient of variation (CV) and then rec-
ommend adequate sample size for such studies in
human muscle.

METHODS

PubMed was used to define all human muscle archi-
tecture studies published from 1968 through July
2011. Once the studies were identified, they were sep-
arated by methodology into dissection studies, ultra-
sound, magnetic resonance imaging (MRI), biopsy/
histology, and studies using a combination of these
methods. We focused on those studies that used dis-
section methods to define muscle architecture,
because they contain accurate measurements of mus-
cle fiber length and sarcomere length. We analyzed
the number of different muscles measured per study
within a subject and the number of samples per mus-
cle (number of subjects used). We calculated the
total number of samples (number of muscles multi-
plied by number of subjects) and calculated the
within-muscle fiber length coefficient of variation
(CV,y,) for the ith region according to the equation:

1 n
CVi:;-;CVm

where the subscript i refers to the particular region
(e.g., forearm or leg; numbered 1-11), and m refers
to the particular muscle within a region containing n
muscles. N varies from 5 to 42 in this analysis and rep-
resents the number of times fiber length has been
reported in the literature in a particular region. For
example, the thigh has an n of 42, because the quadri-
ceps and hamstring muscles are often studied. The
arm (excluding shoulder and forearm which are sepa-
rate regions) has only been reported five times. The
average CV for all muscles was simply calculated as:

1
V== CV,
i=1

—_

11

We then used this information to determine
sample sizes (number of subjects) for an independ-
ent samples ttest with o = 0.05 and power (1-f) =
0.80 using the equation:*

16 - (CV;)°
(In(1 — §))?
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where CV; = ith region coefficient of variation and
8= percent expected treatment effect.

RESULTS
We examined the 163 human muscle architecture
studies that used a variety of methods. Of these
163 studies, 26 used dissection methods, 63 used
ultrasound, 4 used MRI, 18 used a combination of
ultrasound and MRI, and 5 used biopsy/histology
methods. An additional 47 studies were modeling
studies, descriptive anatomical studies, or diffusion
tensor imaging studies. Others reported fiber
length data duplicated from a previous study or
did not report mean and standard deviation, thus
making it impossible to calculate coefficient of var-
iation; these studies were not included in the anal-
ysis. We distilled the 163 studies down to 26 usable
dissection studies.”™®

The average number of muscles measured per
dissection study was 9 * 10 (mean * SD) with
a range of 1-28 muscles measured per study
(Fig. 1A). The average number of subjects per dis-
section study was 9 = 5 with a range of 1-25 sub-
jects per study (Fig. 1B). The average total number
of samples (number of muscles X number of sub-
jects per study) was highly variable, 71 = 122
(range, 1-567). The average fiber length coeffi-
cient of variation (CV) by region was 18 * 5%
(range of 12-27%; Fig. 1C). Using these data in a
one-way analysis of variance, if a treatment was
expected to change fiber length by 10%, in the
muscles of the thigh (CV = 12.35%), a sample size
of 22 subjects per group would be required for a
power of 0.80 and o = 0.05 to determine a differ-
ence. Of interest, given the same 10% treatment
effect in the foot (CV = 26.54%), sample size
increases to 102 subjects per group because foot
fiber length CV is so much greater (this is primar-
ily due to small average fiber lengths in the foot).
If the size of the treatment effect is increased to
20%, the corresponding sample sizes decrease to 5
per group in the thigh and 23 per group in the
foot (Fig. 1D). Regardless of the effect size, these
data demonstrate anatomical variation in fiber
length CV; and point to the need for anatomical
region-specific experimental design.

DISCUSSION

Here, we show that significant and systematic mus-
cle fiber length variability exists by anatomical
region, which leads to variable sample sizes
required to perform adequately powered experi-
ments. The CV is important to consider when
designing studies that use muscle architecture
parameters. We showed that sample sizes can vary
from 5 to more than 100 depending upon the
expected treatment effect and the region of the
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FIGURE 1. A: Histogram representation of the number of different muscles throughout the body that were measured per study (B)
Histogram representation of the samples studied per muscle. This typically corresponds to the number of cadaveric specimens (C)
Mean coefficient of variation (CV;; see text for details of calculation) grouped by body region; Error bars in this graph indicate SEM.
(D) Plot of effect size and sample size by anatomical region estimating a 20% treatment effect.

body that is being studied. Indeed, no studies
have ever reported sample sizes of greater than
100 subjects, which would be considered a major
undertaking.

Currently, mathematical models are often
implemented using data that come from studies
with few samples or models that do not properly
scale to account for variability between subjects or
variability between body regions and muscles. The
way in which any of the architectural parameters
scale with body size is unknown.*” Therefore, using
these models to define surgical methods, rehabili-
tation strategies, or motor control strategies should
be considered with caution.

There has been a marked increase in the num-
ber of fiber length studies published that use ultra-
sound, since the seminal paper by Ikai and Fuku-
naga.go However, it must be emphasized that none
of these studies measure sarcomere length, and thus
it is not clear whether long fiber lengths reported,
for example, represent short fibers containing
stretched sarcomeres or whether the fibers are
actually long, composed of a high number of serial
sarcomeres. We advocate that studies use gold-stand-
ard dissection methodology, when possible, with rela-
tively large sample sizes (>10) to define human mus-
cle architecture. Furthermore, studies using other
methods for measuring muscle architecture, such as
imaging, should consider body region variability as
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well as any treatment effect and calculate the num-
ber of subjects needed accordingly. We use 10% and
20% treatment effect/effect size of fiber length as an
example in this manuscript, but other variables of in-
terest may have larger or smaller effect sizes. If the
variable of interest in a study is a muscle architecture
parameter other than fiber length, we encourage
investigators to perform a similar analysis to that pre-
sented here using literature values to ensure that
studies have adequate sample sizes and power.

This work was supported in part by NSMRC R24 HD650837 and by
the Department of Veterans Affairs, Veterans Health Administra-
tion, Office of Research and Development, Senior Research
Career Scientist Award.
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