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Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced func-
tional capacities, and impaired quality of life. It primarily involves alterations in tendon health and me-
chanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive
muscle changes that have a negative impact on surgical reparability of the RC tendons and clinical out-
comes. At the same time, a significant base of clinical data suggests a relatively weak relationship between
RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review
aims to summarize the potential contribution of peripheral, spinal, and supraspinal neural factors that may
(1) exacerbate structural and functional muscle changes induced by tendon tear, (2) compromise the
reversal of these changes during surgery and rehabilitation, (3) contribute to pain generation and persis-
tence of pain, (4) impair shoulder function through reduced proprioception, kinematics, and muscle recruit-
ment, and (5) help explain interindividual differences and response to treatment. Given the current clinical
and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully
reviewed this body of literature with a particular emphasis on suprascapular neuropathy that has generated
a large number of studies in the past decade. Within this process, we highlight the gaps in current knowl-
edge and suggest research avenues for scientists and clinicians.
Level of evidence: Narrative Review.
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The human shoulder complex exhibits a unique
anatomic design to allow a wide range of motion at various
speed and force levels. The shoulder joint complex has an
urce of funding for this study was NIH R01 HD073180.

uests: Samuel R. Ward, PT, PhD, 9500 Gilman Drive

), La Jolla, CA 92093, USA.

ss: srward@ucsd.edu (S.R. Ward).

ee front matter � 2015 Journal of Shoulder and Elbow Surgery

/10.1016/j.jse.2015.04.004
unstable bone configuration secured by connective tissues
and dynamic stabilizers (rotator cuff [RC] muscles)
controlled by a sophisticated neuromuscular system.157,161

As a consequence, shoulder structures, particularly RC
tendons, are prone to various injuries and degenerative
disorders.19,121 RC tendon tears are common in the
general population104,123 and can lead to shoulder pain,
impaired functional capacities, and reduced quality of
life.88,164
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RC tendon tears are not necessarily associated with pain
or patient-reported loss of shoulder function91,164,165;
however, asymptomatic patients may develop symptoms in
a relatively short time.107 Symptomatic patients usually
undergo surgery when nonoperative and pharmacologic
options have been exhausted.112,130 Surgical management
decisions are mainly driven by patients’ pain, disability,
and functional requirements rather than by the severity of
local tissue damage.15 In the short term, nonoperative
treatment may be effective in a fraction of patients,35,50,76

but tissue damage and symptoms may progress over
time,91,107,164 further limiting surgery and rehabilita-
tion.79,92,96,98 RC tendon repair is not universally success-
ful; w25% of repairs fail to re-establish the integrity of the
RC98 (up to 70% in massively retracted tears36), and
patient-reported improvements are limited.79,98 Preopera-
tive factors, such as age, chronicity, and severity of muscle-
tendon unit impairments, have been repeatedly associated
with higher retear rates and poorer clinical outcomes.79,98

Paradoxically, 2 recent meta-analyses98,130 suggested that
patients with intact repairs might not have significant
differences in symptom improvement compared with
patients with recurrent tears. Another major concern is that
muscle impairments do not seem to be reversed, even when
repair is intact and function is improved at follow-up.26

During the past decades, RC disease has been
extensively investigated within the framework of tendon
pathophysiology, tendon to bone healing, and muscle
changes after tendon tear.30,72 A smaller set of studies have
investigated how peripheral, spinal, and central neural
factors are likely to contribute to muscle-tendon unit
changes, impaired shoulder function, and responses to
treatment. Expanding our knowledge, or at least consid-
ering the potential involvement of both peripheral and
central nervous systems, is critical to improve our under-
standing of RC disease and our ability to appropriately
intervene along the continuum of RC injury processes.
Therefore, this review aims to scrutinize and highlight the
gaps in current knowledge about the nervous system that
may be altered in patients with RC disease from the
peripheral receptors to the brain and from the brain to the
neuromuscular junction. We summarized how these factors
may (1) exacerbate structural and functional muscle
changes induced by tendon tear, (2) compromise the
reversal of these changes during surgery and rehabilitation,
(3) contribute to pain generation and persistence, (4) impair
shoulder function by impairing shoulder proprioception,
kinematics, and muscle recruitment, and (5) contribute to
explain interindividual differences in symptoms and
response to treatment. Given the current and lively interest
in peripheral nerve injuries in the context of RC disease and
surgery, we carefully reviewed this body of literature with a
particular emphasis on suprascapular nerve (SSN) injury
that has generated a large number of studies in the past
decade. Within this process, we highlighted the gaps in
current knowledge and suggested research avenues for
scientists and clinicians.

Proprioceptors and related spinal reflexes

Shoulder movements and positional changes induce a
deformation of tissues surrounding joints, including skin,
muscles, tendons, fascia, joint capsules, and liga-
ments.24,27,47,122,144,156 All these tissues are innervated by
mechanically sensitive receptors termed proprioceptors that
relay information to the central nervous system about
movement, position, and forces exerted on shoulder struc-
tures (e.g., muscle spindles, Golgi tendon organs, Ruffini
endings, Pacinian and Meissner corpuscles). The distribu-
tion and the function of proprioceptors in shoulder joints
and soft tissue have been investigated in both animal and
human studies.40,51,139,141,144,147,156 Glenohumeral joint
and ligament receptors probably play a minor role in
shoulder proprioception,122 as illustrated by the small
proprioceptive deficit observed after shoulder arthro-
plasty.21 However, they may act as limit detectors, trig-
gering protective and synergistic reflex muscle activity
during movement.27,46,64,141,149,158 In RC muscles and
tendons, a large concentration of muscle spindles and Golgi
tendon organs have been demonstrated in rabbits and
rats,3,22,105,166 but no human data exist. Current theory
suggests that muscle spindles are the most important pro-
prioceptors, especially during movement.122 They also play
a critical role in regulating muscle contraction through
spinal reflexes that are essential for joint stability and
accurate motor control.101 Golgi tendon organs are equally
important proprioceptors, signaling information about force
and mass, and are also involved in the regulation of muscle
contraction.122

The effect of tendon disruption on muscle spindles and
Golgi tendon organs has been studied in a limited number
of animal experiments concerning hindlimb muscles only.
After tenotomy, muscle shortening and changes in the
surrounding extrafusal tissue modify the morphology of
muscle spindles that become slack and distorted.169 In the
chronically tenotomized muscle, atrophy of intrafusal
fibers, degeneration of supplying axons, and fibrotic
thickening of the capsule have been reported.67,95 Func-
tionally, acute tenotomy decreases muscle spindle
discharge,56,160,169 but interestingly, responsiveness of
muscle spindles from the chronically tenotomized muscle
has been shown to increase.56,57,169 Shortening of intrafusal
fibers, increased preliminary stretch caused by kinking of
intrafusal fibers, change in passive mechanical properties,
and increased sensitivity of spindles have been subse-
quently proposed as potential explanations for this
phenomenon. These increases in muscle-tendon afferent
outflow have also been suggested to result from non-
proprioceptive discharge.57,78 Increase in the amplitude of
the monosynaptic reflex has also been repeatedly observed



1324 D. Bachasson et al.
in the chronically tenotomized muscle,10,61,75,160 suggest-
ing adaptive changes in motoneuron excitability consistent
with the decrease in muscle mechanical loading.99 In the
Golgi tendon organs, tenotomy also induces morphologic
changes, but the physiologic consequences remain to be
investigated.67 To the best of our knowledge, only 1 study
related to proprioceptor function in RC tendon tear has
been conducted and reported that experimentally induced
inflammation within rabbit RC sensitizes and increases the
firing of mechanical receptors.166

Based on the findings of these studies, it is reasonable to
speculate that RC tendon tear is associated with structural
and functional alterations of proprioceptors. Either reduced
or inconsistent proprioceptive information from the injured
muscle-tendon unit and altered muscle reflex activity may
impair shoulder proprioception and contribute to impaired
kinematics and muscle recruitment (see also the section on
shoulder muscle activity and kinematics). Finally, the
effects of tendon repair on the structure and the function of
proprioceptors remain entirely unknown. Further experi-
mentations are therefore required to assess the relative
contribution of these mechanisms to anatomic and clinical
impairments associated with RC disease.
Central processing of proprioceptive
information

Proprioceptive information from the shoulder and more
broadly from the upper limb is conveyed through the spino-
thalamic tracts and relayed to the somatosensory cortex,
where it is referred to a central body map allowing the
conscious awareness of arm position andmovement in space.
Unconscious proprioceptive tracts (i.e., spinocerebellar
tracts, projecting in the ipsilateral cerebellum) and the cer-
vical propriospinal system are also involved in the coordi-
nationmovements involvingmultiple joints of the arm.122,125

Measurement of errors in the perceived position, move-
ment detection latency, or ability to reproduce a determined
force level can be used to globally assess shoulder proprio-
ception.6,86,108,126,132 A large fraction of studies involving
shoulder proprioception assessment have been conducted in
patients with shoulder instability.6,108,126 In the overhead
athlete with isolated infraspinatus atrophy caused by SSN
compression, impaired sense of movement associated with
different brain activation patterns has been reported, sug-
gesting an important contribution of RC muscle to shoulder
proprioception.132 Decreased sense of movement4,89,131 and
a tendency to overestimate the target during force repro-
duction tests90 have been reported in patients with RC ten-
dinopathy, but no data exist in patients with RC tendon tears.
In conditions such as knee disorders, functional brain mag-
netic resonance imaging demonstrated reduced activation of
sensorimotor cortical areas and increased activation in
proprioception-related brain regions; however, no data exist
in patients with RC disease.70 In healthy subjects, trans-
cranial magnetic stimulation (TMS) combined with periph-
eral nerve stimulation has been used to assess the modulation
of the propriospinal system125 of the upper limb, which is an
important determinant for synergies between forearm, hand,
and shouldermuscles. This system remains to be investigated
in patients with RC disease.

Proprioception has been insufficiently assessed in patients
with RC disease despite its recognized importance in other
musculoskeletal conditions.122 Therefore, further studies are
required to assess proprioception in patients with RC disease
and patients who have undergone RC reconstruction.

Nociceptors and peripheral and central pain
processing

Nociceptors are high-threshold receptors that detect signals
from damaged tissue or tissue on the verge of damage. They
can be found in the shoulder, skin, muscles, joints, soft tissue,
and bone.32,40,41,51,144,149,150 RC disease is associated with
local tissue damage and inflammation within the RC and
surrounding structures, which release a variety of substances
that sensitize nociceptors by decreasing their activation
threshold (peripheral sensitization), resulting in hyperalgesia
at the site of injury.23,34,41 Prolonged release of neuropeptides
by nociceptive afferent fibers at the dorsal hornmay sensitize
nocineurons and cause long-term changes in pain processing
at the spinal level and higher centers that result in pain hy-
persensitivity within but also outside the original zone of
injury.163 As previously observed in other musculoskeletal
conditions,53 sensory abnormalities have been observed on
the injured but also on the noninjured side of patients withRC
disease, illustrating the involvement of central mecha-
nisms.39,48,55 Interestingly, patients with a RC tendon tear
and signs of central sensitization have been shown to have
worse clinical outcomes after surgery.48 Pain may have
profound effects on motor behavior mediated at various
levels of the nervous system and have an impact on numerous
motor parameters, such as reflex amplitude, muscle activity,
kinematics, movement planning, and brain activation5 (see
section on shoulder muscle activity and kinematics).

Pain remains poorly characterized in patients with RC
disease, but the use of existing pain assessment tools and
the development of biologic markers have the potential for
enhancement of our understanding of pain in RC disease.24

Interindividual differences in the magnitude of these
changes and their persistence after local tissue damage has
healed may explain differences in clinical presentation and
response to therapies.24

Motor nerves and neuromuscular junction

The motor innervation of the RC muscles is achieved by
nerves emerging from the posterior and the superior
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trunks of the brachial plexus, all originating from the C5-
C6 cervical roots and C4 nerve root in some in-
dividuals.2,81,137,167 The architecture and the high
mobility of the shoulder complex predispose nerves to
various dynamic or static compressive and traction in-
juries.148 Cervical radiculopathy, brachial plexopathy, and
peripheral nerve trunk injuries are potential comorbidities
of RC tendon tear.52,136 Motoneuron damage immediately
reduces muscle activation and induces progressive muscle
changes proportional to the severity of nerve injury.146

Over time, the muscle tissue can virtually disappear
while connective tissue and fat accumulate,85 as recently
illustrated in the human supraspinatus.14,80,102 A partic-
ular interest has been placed on the SSN because it in-
nervates the most affected muscles in RC disease (i.e.,
supraspinatus and infraspinatus) and because it is partic-
ularly prone to entrapment.106,136 SSN injury can cause
shoulder weakness and pain that overlap with the signs of
RC disease.106

SSN injury associated with RC tendon tear:
anatomic studies

SSN injury is possible, given the surgical manipulation of
previously retracted muscles during RC repair pro-
cedures.134 In vivo studies have shown that lateral
advancement during supraspinatus repair initiates a
stretch of the SSN.44,162 The main trunk of the SSN may
be prone to damage, but also its smaller branches may be
injured.44 Following a similar principle, medial retraction
of the supraspinatus and infraspinatus muscles caused by
tendon tear has been suggested to place excessive traction
on the SSN and to promote compressive injuries at the
suprascapular or spinoglenoid notch. In cadavers, supra-
spinatus tenotomy changes the course of the SSN.1,94

Various anatomic variations have also been suggested to
promote suprascapular entrapment (e.g., deep and narrow
suprascapular notch,60,109,119,124,151 shape or ossification
of the superior transverse scapular ligament,118,120,151

arrangements of blood vessels,120,168 configuration of
the fascia securing the SSN to the supraspinatus fossa,28

close relationship of the subscapularis muscle7). Howev-
er, the incidence of these anatomic predispositions in
patients with an RC tendon tear and concomitant neu-
ropathy has never been studied. In addition, the potential
occurrence of dynamic stretch or compressive strain of
the SSN promoted by biomechanical and kinematic im-
pairments in patients with RC disease should not be
neglected.20,117

These anatomic studies must be acknowledged as the
original incentive for investigating SSN function in RC
tendon tears.106 However, they have not addressed the
question of whether these changes are physiologically
relevant and whether smaller nerve branches are also likely
to be insulted clinically.
Prevalence of SSN injury in patients with RC tendon
tear

In patients, diagnosis of SSN injury is confirmed by elec-
trodiagnosis that combines needle electromyography
(EMG) and nerve conduction studies (NCS). Various clin-
ical reports, retrospective studies, and prospective studies
of the prevalence and the impact of peripheral nerve
injuries before or after surgery have been published (see
Table I for supporting material).

After tendon repair, a low risk of iatrogenic nerve injury
has been reported,25,49,59,170 but comparisons of presurgery
and postsurgery EMG/NCS data have not been systemati-
cally performed.18,42,93,170 Goutallier et al42 achieved such
comparisons in the largest sample of patients, and findings
confirmed the low incidence of SSN dysfunction after RC
repair previously reported. In these studies, the long delay
between surgery and electrodiagnosis may have allowed
nerve recovery. Some case reports also suggested that
supraspinatus repair may restore the normal course of the
SSN, therefore reducing nerve strain and allowing its
recovery, but larger studies are required to prove this
concept.18,93 The large undocumented occurrence of trau-
matic events that could have caused direct nerve injury
often limits interpretation of the data (Table I).

Studies suggesting a greater prevalence of SSN motor
neuropathy in patients with RC tendon tears involve
important recruitment bias. In the studies of Boykin et al12

and Shi et al,135 patients were sent for electrophysiologic
examination for persistent pain or severe muscle changes;
similarly, Costouros et al18 and Mallon et al93 selected
patients with severe muscle atrophy and fatty infiltration.
Whereas some studies are consistent with a higher risk of
SSN injury in severely vs. slightly retracted tears,13,93 the
study of Shi et al135 involving a larger spectrum of RC tear
severity does not support this hypothesis. These data thus
call into question the concept of SSN injury as a direct
consequence of muscle retraction. Prospective and care-
fully conducted studies indicate a rare occurrence of
isolated motor SSN injury in patients with RC tendon tears,
even in massive or traumatic RC tendon tear.16,154 Within
the largest series of patients in this topic area,16 peripheral
neuropathy was found in 12% of patients, and only 1
patient exhibited positive signs of SSN injury.

Heterogeneous and incompletely documented EMG/
NCS methods are also major limitations in comparing
results between these studies.13,93,135,154 Some categorize
EMG findings on the basis of the isolated or combined
occurrence of positive EMG signs,135 whereas others use
graded scoring based on semiquantitative assessments of
EMG abnormalities.16,18,135 Regarding NCS, some
compared latencies with previously published values13,16 or
the contralateral side,16,18,154 whereas others compared la-
tencies of patients with positive and negative EMG
findings.13 Severe retraction, ultrastructural muscle



Table I Prevalence of suprascapular neuropathy in patients with rotator cuff tears before or after surgical repair

Studies N Tear etiology Tear severity Time of electrodiagnosis Prevalence of suprascapular neuropathy

Trauma Chronic Mild/
partial

Massive/
full

Before
surgery

After
surgery

Before
and after
surgery

Time from
surgery or
trauma
(months)

Before surgery After surgery

Ha’eri and Wiley,49 1981 5 / / / / 0 5 0 / / 0% (0/5)
Kaplan and Kernahan,69 1984 6 6 0 5 1 5 1 1 / 100% (5/5) 100% (1/1)
Zanotti et al,170 1997 10 0 10 0 10 1 10 1 (24-36) / 10% (1/10)
Goutallier et al,42 1996 24 / / / / 19 24 19 8.5 / w21% (4/19)
Hoellrich et al,59 2005 9 0 9 / / 9 17 (6-28) / 0% (0/9)
Vad et al,154 2003 25 8 17 17 8 25 0 0 / 8% overall (2/25) /
Mallon et al,93 2006 8 0 8 0 9 8 4 4 6 100% (8/8) 0% (0/6)
Costouros et al,18 2007 26 19 7 0 26 26 6 6 8 (3-12)

(trauma)
6 (surgery)

27% (7/26, all trauma) 0% (0/6)

Boykin et al,13 2011 44 / / 6 38 44 0 0 / 0% (partial tear)
60% (massive tear)

/

Shi et al,135 2014 60 / / SS (14)
IS (15)

SS (46)
IS (30)

60 0 0 / 29% overall (26/87)
50% (partial SS tear)
54% (full SS tear/minor
retraction)

17% (full SS tear/>5 cm
retraction)

20% (partial IS tear)
71% (full IS tear/minor
retraction)

23% (full SS tear/>5 cm
retraction)

/

Collin et al,16 2014 49 24 25 0 49 49 0 0 / 2%

SS, supraspinatus; IS, infraspinatus; /, undocumented or unavailable information.

1
3
2
6
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changes, or nonuniform denervation may also complicate
EMG/NCS in RC muscles.8 Ultrasound imaging114 and
multisite EMG assessments may help overcome some of
these limitations. Standardization of procedure and quan-
tification methods170 must be pursued to enhance the
sensitivity of EMG. Recent progress in nerve imaging
techniques82,116,145 may also allow enhancement of our
ability to study peripheral nerve injuries in vivo.

Relative contribution of denervation to muscle
changes associated with RC tendon tears: clinical
data and animal models

In humans, imaging techniques cannot discriminate muscle
impairments related to tendon tear or denervation when
they happen simultaneously.8 EMG/NCS is limited, and an
objective test such as nerve biopsy cannot be reasonably
performed in patients. Consequently, various animal
models of RC disease or nerve injury have been developed
to understand cellular and molecular mechanism underly-
ing muscle changes.30

In rabbits and rodents, tenotomy associated with full
nerve transection has been shown to produce severe atrophy
and fatty infiltration, and these data are frequently used to
support the role of SSN injury in human RC muscle
changes.65,66,73,83,127 However, if nerve injury occurs in
humans, denervation is more likely to be incomplete, with
higher capacity for recovery. In rabbits, fatty infiltration has
been repeatedly observed after isolated supraspinatus
tenotomy,127,129,153 even in the absence of retraction152 and
independent from denervation,38 further clouding the
cause-effect relationship between nerve injury and fatty
infiltration. There are many transcriptional pathways that
control various aspects of the adipogenic, fibrogenic, and
myogenic programs.68 However, distinct pathways may be
triggered by RC tenotomy or denervation as recently
reported in rodents.65,83 Although small animal models
have a limited ability to replicate human RC disease,
previously developed transgenic mice associated with
tendon or nerve injury have great potential to further
understanding of RC pathophysiologic processes.73,84

Increased availability in human tissue may also allow
further investigations of muscle impairments and compar-
ison of data obtained in animal models.

Direct consequences of RC tendon tears on nerves
and neuromuscular junction

Studies that investigated the consequences of tendon tear on
motor nerve and neuromuscular junction provide equivocal
results.61 These effects have been investigated in animal
models of RC tendon tears in rabbit only. Signs of
degenerative histologic changes in the subscapular nerve
after tenotomy of the subscapularis muscle have been
reported,127 but characteristics of these nerve abnormalities
remain unclear. Gayton et al38 reported that motor end
plates were not significantly affected after tenotomy in
rabbits; confirmation is required, given the small sample
size of this work (N ¼ 4). A critical point that has not been
addressed is whether neuromuscular junctions are altered in
patients with isolated RC tendon tears.
Sensory nerves

Sensory nerve injuries have received less interest than the
motor neuropathies discussed before. However, the RC and
surrounding structures receive sensory innervation from
numerous sensory nerve branches29,159 that are equally
susceptible to injury. Injury within a peripheral nerve trunk
induces a local inflammatory response that causes changes
in afferent fibers and in the central nervous system and may
lead to neurogenic pain (see section on nociceptors and
peripheral and central pain processing and reference 31 for
more details). Damage to afferent fibers may also
contribute to the impairment of the transduction of pro-
prioceptive information. SSN block has demonstrated
effectiveness in the management of postoperative pain,63

and pulsed radiofrequency modulation has been reported
to provide promising long-lasting pain relief in experi-
mental models155 and in patients with shoulder pain.62

These data highlight the important contribution of shoul-
der nerves in the transmission of nociceptive information in
patients with RC disease, making them important targets
for shoulder pain management.63,155

Shoulder muscle activity and kinematics

Alterations in shoulder muscle activity and kinematics of
the glenohumeral and scapulothoracic joints have been
widely reported in patients with RC disease.87,97,128 One
potential contributing factor may be that patients with
symptomatic tears display different motor control patterns
during movement compared with asymptomatic patients.128

Kelly et al71 observed that symptomatic patients retain
supraspinatus and infraspinatus activity despite tendon tears
but are unable to activate intact deep muscles (i.e., sub-
scapularis) as efficient co-contractors and that they may
preferentially rely on periscapular muscles during
elevation. These results have been partially reproduced by
Cordasco et al17 and suggest that symptomatic patients fail
to develop alternative muscle activation strategies to
compensate for weakened RC muscles and the resulting
altered shoulder biomechanics. Importantly, they suggest
that RC muscles may continue to be activated despite
tendon damage. Shinozaki et al138 recently used positron
emission tomography with fluorodeoxyglucose77,113 to
assess shoulder muscle activity differences between
asymptomatic and symptomatic patients. They observed
increased trapezius activity and lower deltoid activity in the



Figure 1 Potential sites for sensory and motor impairments
associated with supraspinatus tendon tear. Tendon tear, soft tissue
or joint damage, and local inflammatory environment sensitize
peripheral nociceptors (mechanical or chemical high-threshold
peripheral nociceptors, e.g., free endings) that cause pain and
increase the sensitivity of central pain centers (peripheral and
central sensitization, respectively). They may also induce im-
pairments in proprioceptive outputs (muscle spindles; Golgi
tendon organ, Ruffini endings; Pacinian corpuscles) and in the
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symptomatic group but no differences in RC muscle
activity compared with asymptomatic patients. This tech-
nique appears promising, but further developments are
required, particularly regarding quantification.

An important issue is whether different muscle activity
patterns observed in symptomatic patients are the cause or
the result of pain or both. Experimentally induced pain has
been shown to increase activity in the antagonist muscle
during abduction (i.e., latissimus), probably in an attempt to
limit the compression of painful subacromial structures.
Similar adaptations have been observed in patients with
massive RC tendon tears.17,143 Masking pain may reduce
these protective mechanisms and further promote local
tissue damage. Stackhouse et al142 reported that pain
reduced shoulder strength in external rotation in association
with a decrease in voluntary activation when using the
twitch interpolation technique.103 Sole et al140 also pointed
out that motor adaptation to acute pain may be individual
and task specific.58 Given the acute nature of experimen-
tally induced pain,5 precautions should be taken in trying to
generalize these results in patients with chronic RC disease.

In patients with RC disease, pain reduction has been
shown to improve glenohumeral motion and to reduce
scapular contribution during arm elevation.133 Dramatic
increases of peak torque and power have also been re-
ported.9 Surprisingly, when it is assessed with isometric
contractions, pain reduction has been shown to have no
relevant effect on shoulder strength,33,115 suggesting that
pain-related motor impairments may be particularly visible
during movement.

These experiments observed muscle activity pattern
changes under pathophysiologic and simulated conditions;
however, the relative contribution of muscle-tendon unit
impairments, biomechanical abnormalities, pain, impaired
proprioception, and deterioration of motor control in
shoulder dyskinesia and weakness remains unclear. Poor
coping strategies in muscle activation patterns in response
to biomechanical changes and pain may contribute to
worsen local tissue damage and pain. Interestingly, motor
adaptations may also differ between individuals, in partic-
ular between symptomatic and asymptomatic patients.
central processing of proprioceptive information (proprioceptive
pathways; primary sensory cortex). Motoneurons innervating both
extrafusal and intrafusal muscle fibers (a- and ɣ–motoneurons,
respectively) may equally undergo remodeling and impairments.
The neuromuscular junction may also be altered as a result of
reduced neural activity, muscle impairments, and central alter-
ations within the motor nervous system. At the nerve level, stretch
or compression caused by muscle retraction, mass compression,
and manipulation of the previously retracted muscle or direct
nerve manipulation during surgery can result in injury of both
sensory and motor axons. The suprascapular nerve may be
damaged at any point of its path, but the suprascapular notch and
the cervical roots are identified as the most common sites for
injury. Nerve damage can further increase pain, limit the afferent
transduction of proprioceptive information, and aggravate muscle
changes.
Motor cortical changes

As in various other conditions, RC disease may induce
structural and functional changes in the motor cortex that
could partly explain changes in motor control and affect
muscle activation. Little is known about the cortical orga-
nization of motoneurons related to proximal muscles of the
arm and even less regarding RC muscles.100 Functional
magnetic resonance imaging has been previously used but
is not discriminant for motor cortical mapping of individual
RC muscles.74 The output of the primary motor cortex
(M1) can be objectively measured by motor evoked po-
tentials (MEPs) elicited by TMS, providing direct insight
into the cortical representation and the function of the
corticospinal tracts.45 Mapping of the infraspinatus muscle
has been recently described in healthy subjects,111 and the
same group observed positive correlation between pain
chronicity and reduced M1 excitability in patients with RC
disease,110 supporting an indirect inhibitory effect of pain
on corticospinal excitability in line with current concepts.5

However, the effects of limb disuse and other spinal and
supraspinal neural factors cannot be excluded. Similarly,



Table II Suggested deleterious nervous consequences of rotator cuff (RC) disease in studies cited in the current review

Structures/mechanisms Consequences Human RC studies Animal RC studies Human or animal
non-RC studies

Proprioceptors, afferences and
related spinal reflexes

Structural/functional
impairments of proprioceptors

[ Motoneuron excitability

166 3,22,56,57,78,95,105,

160,166,169

10,61,75,160

Central processing of
proprioceptive afferences

Y Sense of position
Y Sense of movement
Y Sense of force
Modified brain activity

131,132

89

4,90

70

Nociceptors and peripheral and
central pain processing

Peripheral sensitization
Central sensitization

40,41,150

39,48,55

149

Motor nerves � Injury
Iatrogenic
Direct consequence of RC disease

1,8,13,16,44,49,59,69,

93,94,154,162,170

65,66,73,83,84,127,

129,152,153

Neuromuscular junction Y ¼ Acetylcholine receptors
Y Cholinergic/noncholinergic

muscle stimulation

38,127 61

Sensory nerves � Injury 56,95,160,169

Shoulder muscle activity and
kinematics

Modifications of muscle
recruitment and kinematics

Y Voluntary activation
[ ¼ Strength with pain

reduction

17,71,87,97,128,133,138,

140,142,143

9,33,115

Cortical changes Y Corticospinal excitability 11,110

Y, decreased; [, increased; ¼ , unchanged.

Numbers refer to references; review articles are excluded.
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bilateral alterations of corticospinal excitability in the del-
toid and the first interosseous muscles have been reported
in patients with RC tendon tears.11 However, spinal moto-
neuron excitability must be properly assessed to verify that
the change in size of MEPs is not mediated at the spinal
level.37 C3-C4 propriospinal neurons may also influence
the excitability of premotoneuronal sites and therefore the
amplitude of MEPs.43,125 Peripheral nerve stimulation
associated with TMS has been used recently in healthy
subjects to assess the modulation of afferent signals on M1
output,54 thus opening the possibility for its application in
patients with RC disease. Further TMS studies are required
to confirm the effects of RC disease on the motor cortex
and to understand how these alterations may impair muscle
activation, motor control, and shoulder function.
Conclusion and perspective
In this review, we identified a large number of neural
structures and mechanisms that may contribute to pain
and shoulder dysfunction in patients with RC disease.
These structures and mechanisms are summarized in
Figure 1. However, numerous questions remain unan-
swered (Table II). Current data suggest that inflamma-
tion and muscle-tendon unit impairment disrupt
proprioceptive function and reflex muscle activity.
Alterations of proprioceptive afferents may impair pro-
prioception and motor control, therefore contributing to
poor muscle activation and impaired shoulder kine-
matics. However, motor control and proprioception im-
pairments in patients with RC diseases have been
insufficiently assessed and require further investigations.
Current advances in the understanding of pain patho-
physiology encourage the enhancement of pain assess-
ment and sensory abnormalities that remain poorly
characterized in the clinical setting in patients with RC
disease. Recent experiments suggest that the occurrence
of motor nerve injury appears to be less frequent than
first assumed, yet peripheral nerve dysfunction remains a
non-negligible aggravating factor. Thus, this problem
must be considered (perhaps with improved diagnostic
tools) in clinical practice and further explored through
both anatomic and physiologic studies. Some data also
highlight that tendon disruption, disuse, and inflamma-
tion may have a direct impact on neuromuscular junc-
tion and motoneurons, but further studies are needed for
confirmation. Increased availability of human tissue
obtained during surgeries and animal models of RC
disease will also improve our understanding of RC
physiopathology and will help define markers able to
improve the detection of muscle denervation processes.
Damage inflicted to sensory nerves should not be
neglected because it may contribute to the generation of
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pain and disrupt the afferent transduction of proprio-
ceptive information. Evidence that RC disease induces
significant motor adaptations and the important role of
pain in these changes have been clearly demonstrated.
However, the contribution of proprioception deficits,
motor cortical changes, and modified brain activity in
patients with RC disease remains to be explored. The
problem of motor nervous system dysfunction is
particularly relevant as the field begins to explore the
mechanisms of reduced muscle force generation after
reconstruction. If these problems are induced or aggra-
vated by poor muscle activation, the nervous system
impairments may need to be addressed first, perhaps in a
way that is consistent with neurorehabilitation instead of
standard musculoskeletal physical therapy. In the clin-
ical setting, all these factors may contribute to explain
why clinical presentations and responses to treatments
can vary considerably between individuals despite
similar peripheral tissue damage. Therefore, our final
proposal is that different profiles involving different
degrees of biomechanical, motor control, proprioceptive,
and nociceptive impairments exist among patients with
RC disease. The development of standardized tests
achievable in the clinical setting to assess each of these
aspects is necessary to provide comprehensive assess-
ment and to refine the management of these patients.
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