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Abstract: Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of
injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfec-
tion with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific
intermediate filament protein desmin, we found that a green fluorescent protein—desmin chimeric protein was
unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as
others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an
unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a
method that provides objective classification of regions of images of striated cytoskeletal structures into
“usable” and “unusable” categories. This method consists of a combination of spatial analysis of the image using
Fourier methods along with a boosted neural network that “decides” on the quality of the image based on
previous training. We trained the neural network using the expert opinion of three scientists familiar with these
types of images. We found that this method was over 300 times faster than manual classification and that it

permitted objective and accurate classification of image regions.
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INTRODUCTION

The cellular cytoskeleton has emerged as a multifunctional
organelle that serves not only to maintain cell shape and
strength, but is capable of performing transducer functions
such as activating cellular signaling cascades that ultimately
result in altered gene expression (Gautel, 2011). This func-
tion often occurs in a background of cell growth and
division, which means that the assembly and disassembly of
the cytoskeleton must be relatively rapid (Kueh et al., 2010)
and robust. Indeed, recent studies have identified heretofore
unexpectedly rapid turnover of cytoskeletal structures that
conclusively demonstrate the dynamic nature of the cyto-
skeleton (Imanaka-Yoshida et al., 1993). Often real-time
analysis of cytoskeletal structures involves methods in which
cytoskeletal fusion proteins are expressed in living cells and
tissues and then imaged by confocal microscopy.

To determine the optimal timing of tissue harvest after
transfection with a fusion protein, prior studies in our
group have examined protein expression and contractile
function of muscle over a 28-day period post—green fluores-
cent protein (GFP) plasmid transfection (Palmisano et al.,
2007). Briefly, the amount of GFP protein present in trans-
fected tissue was determined by Western blot. The protein
was transiently expressed, peaking 7 days after transfection
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and becoming nearly undetectable after 28 days. Addition-
ally, maximal isometric force generation of the mouse hind-
limb (Barash et al., 2004) was used to evaluate the effects of
the transfection on the muscle’s function. Isometric force
had diminished the most at 1 and 3 days, but by 21 days
force had returned to pretransfection values. About 65% of
the force had been regained at 7 days, which was signifi-
cantly more that at 3 days.

One of the challenges in performing analysis of such
dynamic cellular images is selecting the region of interest
(ROI) to be analyzed. Clearly millions of such ROIs are
available within large samples, and the temptation is to be
attracted to ROIs based on preconceived notions of cell
structures or the process studied. This manual selection
process may yield biased and, therefore, incorrect results
(Eilbert et al., 1990). In addition, manual selection of ROIs
can be extremely time-consuming, which limits the total
volume fraction of tissue that can be analyzed and thus the
generalizability of the results because a small volume frac-
tion of the tissue is probed (Weibel, 1980). Thus, creating a
method that rapidly and objectively selects valid ROIs (i.e.,
ROIs that meet the researcher’s expert criteria) would be
very valuable.

Texture and structure analyses are methods commonly
used to distinguish one area of an image from another
(Kayser et al., 2009). Texture analysis examines the pixel-
based distribution of gray values within an image whereas
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Figure 1. Confocal images from a skeletal muscle fiber expressing
the GFP-desmin chimeric protein. A: Typical image of a GFP-
desmin-transfected fiber. There is oversaturation around the
nucleus, while other regions contain low levels of expression.
B: Partitioning of original image into 27 sections for analysis. FFT
and non-FFT parameters were calculated within each section and
used for classifying. C: Results of classification performed by
trained neural network. Blackened sections were classified as
“unusable,” while the remaining sections were classified as “usable”
for further analysis. Regions of oversaturation as well as regions
with low signal were eliminated by the network.

structure analysis is based on the identification and spatial
positioning of objects. Simple measurements of texture can
be obtained by observing the distribution of neighboring
pixels’ gray values around each pixel and calculating metrics
based on their frequencies of co-occurrence (Haralick, 1979).
Other metrics are based on the frequency of edges within an
image area and runs of neighboring pixels with similar gray
values. These simple metrics are referred to as statistical
measures of texture. Other measures of texture can be
obtained from a number of operations, including local
linear transforms (Unser, 1986), wavelet transforms (Unser,
1995), Fourier transforms (Desoky & Hall, 1990; Zou &
Wang, 2001), discrete cosine tranforms (Desoky & Hall,
1990), and Hadamard transforms (Desoky & Hall, 1990).
When working with images of longitudinally-oriented
skeletal muscle fibers, it is possible to exploit their regular
structure to identify areas of interest. The spatial regularity
of cytoskeletal proteins reflects the longitudinally-oriented
sarcomere structures within muscle fibers (Fig. 1A). While
edge detection can be used to define sarcomere length
(Infantolino et al., 2010), the longitudinal regularity of
muscle is especially suited for analysis by Fourier transform
(Shah & Lieber, 2003). The one-dimensional fast Fourier
transform (FFT) has been most often used to find the

dominant frequency in high-quality images, which corre-
sponds to the sarcomere length (Gannier et al., 1993; Helmes
et al., 1999; Weiwad et al., 2000; Ockleford et al., 2002; Shah
& Lieber, 2003), although the FFT-derived power spectrum
also provides information on the relative strength of that
frequency and may help determine whether an ROI is
acceptable by quantifying how clear repeating structures are
in that region.

Texture and structural measures calculated from ROIs
can be used to sort regions into two or more classifications.
Common classification methods include multivariate analy-
sis, logistical regression, and neural networks. These ap-
proaches typically implement a set of training images that
has already been classified by an expert to initially “con-
struct” the classifier. The power of these classification algo-
rithms is that, from the training set of images, they can
determine the quantifiable characteristics of an image that
factor into the classification and even their relative impor-
tance in determining the classification. Once constructed,
the classifier can then classify new images based on their
texture or feature measures, usually hundreds or thousands
of times faster than manual processing, and in an unbiased
fashion. In this article, we describe a method to select ROIs
from confocal images of striated cytoskeletal structures. A
neural network reproduced investigators” decisions by using
statistical and spatial-frequency-based measures of texture
to select areas of the image with strong signal, with low
noise, and without oversaturation. This method would al-
low objective analysis of how cytoskeletal structures change
during a bout of isometric or eccentric exercise in future
studies.

MATERIALS AND METHODS

Experimental Model

Experiments were performed on the fifth toe of the exten-
sor digitorum longus (EDL) muscle from wild-type 129/Sv
(Taconic Farms, Germantown, NY, USA) and desmin-null
129/Sv (Milner et al., 1996) mice. All procedures were
performed in accordance with the National Institutes of
Health (NIH) Guide for the Use and Care of Laboratory
Animals and were approved by the University of California
and Department of Veteran’s Affairs Committees on the Use
of Animal Subjects in Research. The EDL was injected either
with plasmid DNA encoding a GFP-desmin chimeric pro-
tein or a mix of plasmids encoding GFP-desmin and red
fluorescent protein (RFP)-a-actinin, and the plasmids were
introduced into the cells by electroporation with a mouse-
specific TriGrid Delivery System (IChor Medical Systems,
Inc., San Diego, CA, USA) (Vitadello et al., 1994).
Experiments reported here were performed on muscles
7 days after transfection, as we could be confident in ade-
quate protein expression and muscle function at this time-
point (Palmisano et al., 2007). Immediately after sacrifice,
hindlimbs were skinned, transected, and placed in chilled
mammalian Ringer’s solution. The fifth-toe EDL muscle
belly was removed with its tendons intact and was checked



for chimeric protein expression under a dissecting scope
(Model MZ-16, Leica, Wetzlar, Germany) by fluorescent
illumination. Muscles with little or no transfection or mus-
cles with transfection only in the center of the tissue (which
would preclude epi-illumation confocal microscopy) were
excluded from further analysis. A total of 8 muscles having
sufficient transfection were used in this study.

Confocal Microscopy

Intact muscle fibers within whole muscles were viewed
using a Zeiss LSM 510 confocal microscope with a 40X/0.6
LD Plan-Neofluar objective, which has a working distance
of 2.9 mm. With the Ar-Kr laser power set to 50%, twelve
512 X 512 pixel image stacks (7 images, 1 um spacing, 2X
line averaging, scan speed of 8, 2.0X zoom) of the same
region were taken in 3-min intervals. All imaging param-
eters (pinhole size, gain, and offset) were optimized for the
first image and were not adjusted for the remainder of
the experiment. Focus was adjusted as needed to keep the
selected portion of the fiber in focus.

Since susceptibility of GFP to photobleaching repre-
sents a potentially confounding variable in analysis of the
image series, we performed pilot experiments using photo-
bleaching controls without any muscle contraction. The
results of these pilot studies demonstrated that a scan speed
of 8 and stack size of 7 images produced excellent images of
adequate image brightness that yielded a large image stack
that included approximately 93,000 um?® of muscle fiber
volume.

Image Processing

Single images from each stack in an experimental series
from the same optical plane were manually identified and
used for further analysis. Images were first manually rotated
if necessary so that a single fiber expressing GFP-desmin or
RFP-a-actinin was aligned with the image panel. Then, in
an automated fashion, image translations were defined using
a hierarchical motion estimation algorithm (Bergen et al.,
1992); the reverses of the translations were applied to the
series to re-align the images; and finally, the image series
was cropped to include the largest region that all images
contained. A sample of an unaligned sequence of images
and an aligned sequence is provided as Supplementary
Movie 1.

Supplementary Movie 1

Supplementary Movie 1 can be found online. Please visit
journals.cambridge.org/jid_ MAM.

Image Analysis

The following analysis was automatically performed across
the stack of images: Each image was portioned into smaller
rectangular sections such that each section covered one-
third of the image width and was 18 pixel rows high
(Fig. 1A). This partitioned the image into roughly 30
sections—arranged 3 across and ~10 high. Fourier trans-
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Table 1. Parameters Obtained from Each Image Section.

FFT-Derived Parameters Statistical and Other Parameters

Peak power Brightness

Peak power variance Percentage of saturated pixels
Peak power width Percentage of pixels with no signal
Noise Entropy

Horizontal contrast
Vertical long run statistic

Power-to-noise ratio

Sarcomere length

Sarcomere length variance

Phase shift

Phase shift variance

Percentage of rows with
reasonable SL

form tools were applied to each section along the pixel rows
(from 150 to 170 pixels long) to quantify optical power,
power variance, power peak width, sarcomere length, sarco-
mere length variance, myofibrillar phase shift (Shah et al.,
2004), phase shift variance, noise, and power-to-noise. Other
parameters calculated were image brightness, saturated and
unsaturated pixel percentages, as well as several statistical
measures of texture (Table 1).

Calculation of Parameters from the FFT

Prior to Fourier analysis, the pixel rows of each image
segment were autocorrelated. The autocorrelation function
Ay at point i over a window size of 2w + 1 is given by

i+tw

_Z F(u)F(u—m)
Ag(m) = ———— (1)

for —w = m = w pixel lags, where F(u) is the intensity
profile of the segment row and N is the row width. The
autocorrelation amplified the intensity profile by a power of
two at its peaks, resulting in increased signal-to-noise ratio
compared to the raw intensity profile (Shah & Lieber, 2003).
The power spectrum from each autocorrelated segment row
was then calculated from the 1,024-point FFT.
M-1

2 AF(m)e(Z‘n'j/M)km
X(k) _ m=0

for k = (0,1,...,M — 1),
M

)
where j is the imaginary unit, and M = 2w + 1.

Peak power for each segment row was determined from
the power spectrum. Power width was determined as the
width of the power peak at one-tenth of the peak power
value. Noise was determined as the average power value at
frequencies above 1 um™". This frequency cutoff was se-
lected because noise contributes greatly to the power at
these high spatial frequencies, whereas our structures of
interest (Z-disks) have a relatively low spatial frequency. A
power-to-noise ratio was calculated by dividing the peak
power value by the calculated noise value. Since the fusion
proteins were located at the muscle Z-disk, sarcomere length
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was determined from each segment row as the reciprocal of
the peak frequency of the power spectrum. All parameters
were averaged across each image section; peak power vari-
ance and sarcomere length variance were determined from
the row segment values within each image section.

Phase shift between adjacent myofibrils within the sar-
comere lattice was quantified by first calculating the pixel
offsets between peaks of autocorrelated intensity profiles of
rows 0.6 um apart (approximating myofibrillar diameter).
Then, the variance of the mean phase shift for all myofibrils
in each section was also calculated. This value has been used
as a measure of myofibrillar “connectivity” because a sarco-
mere lattice with high connectivity yields a low variance
(Shah & Lieber, 2003).

Calculation of Texture Statistics and Other
Parameters

Saturated and unsaturated pixel percentages for each image
section were calculated as the percent of total pixels in each
image section that had the gray value of 255 or 0, respec-
tively. Before calculating entropy and contrast, image pixel
values were quantized to 16 gray levels. The vertical co-
occurrence matrix Cy was then calculated for each image
section as follows: Cy;; is the number of times a pixel of gray
level i is positioned directly above a pixel of gray level j
within the image section. The horizontal co-occurrence
matrix Cy was calculated in a similar manner. Entropy (a
measure of randomness in the image’s pixels) was then
defined as

L

Vertical contrast (a measure of the difference between verti-
cally adjacent pixels’ brightness) was calculated as

Ez(i_j)ZCVij- (4)
ij

The horizontal contrast can be calculated in a similar
manner using the horizontal co-occurrence matrix Cy in
place of Cy. To determine the vertical long run statistic (a
measure of vertically-oriented strings of pixels of similar
brightness), the vertical run matrix P was first calculated,
where Pj; is the number of times there is a run of length j
in the vertical direction having the same quantized gray
tone i. The vertical long run emphasis statistic was then
calculated as

ZE

G
>
i=1

where T is the total number of runs, G is the number of
gray tones (16), and R is the length of the longest run.

To distinguish objectively among areas with usable
information and those with noise, saturation, or no fiber, a
neural network was created to objectively classify areas as
“to be analyzed/valid” and “not to be analyzed/invalid.” All
parameters described above (Table 1) were calculated for
each image section and were entered into the network. One

j2P1'j> (5)
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Figure 2. Flow diagram of image classification. Preprocessing steps
include image selection from the acquired stack, automated image
alignment to adjust for translation, and image segmentation. Clas-
sification steps include the computation of parameter values within
each image segment and application of the network to select the
usable image regions.

hundred twenty-six image sections from four images of
varying quality were used to train the network. Three inves-
tigators, each a skeletal muscle researcher experienced with
confocal microscopy, ranked each section as very poor,
poor, good, or very good. Comparison of the investigators’
rankings produced weighted kappa values between 0.78 and
0.90, indicating very good to excellent agreement (Portney
& Watkins, 1993). The network’s training data consisted of
the investigators’ averaged classifications for each image
section along with each section’s imaging data. The classify-
ing network was trained in Matlab by employing an adapta-
tion of the Real AdaBoost algorithm from the GML Matlab
Toolbox (MSU Graphics & Media Lab, Computer Vision
Group, http://graphics.cs.msu.ru) (Freund & Schapire, 1996),
using 150 weak learners (iterations) with a single-split clas-
sification structure. An overview of the steps involved in
image processing and analysis can be found in Figure 2.

RESULTS

The ability of a neural network to “learn” the basis for the
expert classification can be determined by following the
error in classification of each image by the network as a
function of the number of times the network iterates.
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Figure 3. Error of the classification network. A: Training error as
a function of iteration number. Training error decreases rapidly to
zero within 35 iterations and remains stable with further itera-
tions. B: Testing error of the classification network as a function of
iteration number on a novel set of 114 images, used to evaluate
network performance. Error dropped to below 15% after 150
iterations and remained stable thereafter.

During network training, error dropped to 0% by 30 itera-
tions and remained stable with further iterations (Fig. 3A),
which indicates that the network “learned” what constitutes
a usable ROI. The network’s performance was then tested
on 114 novel image sections by comparing network-defined
and user-defined classifications. The error on the evaluation
set of images dropped to below 15% by 150 iterations
(Fig. 3B). Increasing the complexity of the network by either
adding iterations or by using a higher-order decision tree
did not improve error percentage. Thus we chose a classifi-
cation network of the simplest structure with 150 iterations.
For all image sections in this evaluation set, the network
correctly matched the investigators’ averaged input 86% of
the time. However, for image sections that were user-
classified as very good or very poor, the network performed
extremely well, with 100% and 96% agreement, respectively.

Implementation of the trained network was fast, taking
less than a second to classify approximately 250 regions
contained within a 10-image set. This is 300 times faster
than the manual method, which required about 5 min. The
network successfully removed areas with oversaturation,
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Figure 4. Relative contribution of different parameters to the net-
work’s classification decisions. Mean sarcomere length (Mean SL),
power-to-noise ratio, and vertical contrast were the most impor-
tant parameters and together accounted for 45% of the basis of the
classification. Note that the percent of rows that were at a reason-
able sarcomere length (% Good SL), and the percent of pixels that
were saturated (% Saturated) did not contribute to the network’s
classification. Hrz, horizontal; SL, sarcomere length; Var, variation;
Vrt, vertical.

high noise levels, and lack of signal. We observed the actual
“choices” of ROIs selected by the network to determine the
intuitive basis for these signals. For the GFP-desmin plas-
mid, the Z-bands and the myonuclei within the fiber are
heavily labeled (Fig. 1B). The regions that were classified as
unfit for further analysis are blacked out in Figure 1C. It is
clearly seen that, after processing, the saturated ROIs around
the myonucleus (Fig. 1C; regions 19, 20, 22-27) were elimi-
nated. Regions with insufficient periodicity (and therefore
low Fourier periodicity) were also eliminated (Fig. 1C; re-
gions 2-4, 8).

The relative importance that each of the various param-
eters plays in training the network’s classification of image
sections was estimated by separating the iterations by param-
eter and totaling the absolute value of their weights (Fig. 4).
The three most important factors in the trained network’s
classification were mean sarcomere length, power-to-noise
ratio (a measure of the Z-disk signal compared to high-
frequency noise), and vertical contrast (a measure of differ-
ence in brightness between vertically adjacent pixels). On
the other hand, the percent of rows that were at a reason-
able sarcomere length and the percent of pixels that were
saturated did not contribute to the network’s classification.
While these parameters might have entered into the classifi-
cation scheme if a larger number of training iterations
(weak learners) had been used, they would not have contrib-
uted to improving the classification because we had deter-
mined that more iterations did not improve the network’s
performance.

We also tested the network’s susceptibility to error due
to image selection and focus errors, two potential confound-
ing sources of variation. First, the importance of selecting
the correct image from the stack to capture the same focal
plane was determined (Fig. 5A). Successive image stacks
were obtained of a transfected fiber in a relaxed muscle. In
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Figure 5. Effects of preprocessing of image stacks. Sarcomere length
versus image stack number was calculated from images of a fiber
from a relaxed muscle. Since the muscle was not moved during the
experiment, the sarcomere length should not change. A: The impor-
tance of selecting images from the same focal plane. The unfocused
image set consisted of the middle image of each stack, while the
focused images were identified by eye as being from the same focal
plane and were not necessarily in the same location in each stack.
Note that the sarcomere length remains relatively constant when
the image series is taken from the same focal plane. B: The impor-
tance of aligning images. Both sets of images were selected to be in
the same focal plane. The unaligned images were all cropped in the
same way as the first aligned image, yielding images of the same
size. Note that aligning images removes much of the variation in
sarcomere length.

the “focused” set, one image from each stack was selected by
hand so that the same focal plane was followed across the
stacks. In the “unfocused” set, the middle image from each
stack was selected for further analysis. Both sets of images
were aligned and cropped, and the first image in the focused
set was classified by the neural network. The regions classi-
fied as good in this image were analyzed for all other images
in both sets. We examined the sarcomere length from each

image set to gauge the importance of selecting images from
the same focal plane. In the resulting sarcomere length
versus image stack number (Fig. 5A), sarcomere length
should remain constant over the set of image stacks because
the muscle was not moved during the experiment. Addition-
ally, sarcomere length should not change should any photo-
bleaching occur with repeated imaging, whereas other texture
measures based on pixel gray values may. While it does
remain relatively constant for the focused images (coeffi-
cient of variation = 1.2%), it changes substantially in the
unfocused set of images (coefficient of variation = 3.7%),
demonstrating the importance of using images from the
same focal plane.

Likewise, the importance of image alignment was de-
fined from image stacks obtained from a fiber in a relaxed
muscle (Fig. 5B). This time, only images from the same focal
plane were used. However, in the “unaligned” set, the im-
ages were not aligned to adjust for any translation, but were
only cropped to yield the same sized images as in the
“aligned” set. The first image of the aligned set was used to
identify good areas in all other images for further analysis.
The sarcomere length of the unaligned images was unstable
(coefficient of variation = 3.6%), while the sarcomere length
from the aligned images remains relatively constant (coeffi-
cient of variation = 1.2%), throughout the series of stacks.

DiscussION

In this study, we have exploited the use of engineered
vectors introduced into living tissue by transfection to track
and image chimeric cytoskeletal proteins. However, uptake
and expression of injected plasmid can be nonuniform,
resulting in irregular expression of the chimeric protein.
Within a single fiber from a transfected muscle, there are
regions that have high expression of the protein and other
regions with no expression at all. This is in contrast to the
uniform labeling achievable with standard immunobhisto-
chemistry. Our classification method performed automated
selection of ROIs within sections based on measured param-
eters within the image and training against expert opinion.

Our classification process (Fig. 2) was automated and
did not require additional input from an investigator. How-
ever, images from the same focal plane were manually se-
lected from successive confocal stacks during image
preprocessing. Our classification method proved accurate as
it agreed with the investigators’ classifications over 85% of
the time. Furthermore, it was over 300 times faster than man-
ual classification and allowed for objective selection of high-
quality regions of the fiber images for further study. This
increase in speed and automation will permit a greater sam-
pling of the tissue than would be possible with a slower pro-
cess. This classification process is somewhat limited in that it
requires images to have certain properties, specifically a fixed
resolution (in the current article, this was 4.4 pixels/um) and
a minimum image width of 150 pixels. Aside from those prop-
erties, there were no further specifications required for an
image to be classified with our method. It should be noted



that our setup and many of our imaging parameters re-
mained the same for all images (see the Confocal Microscopy
section), so it is likely that this allowed our image quality to
be relatively consistent across different image stacks.

Image classification schemes have been previously used
to study skeletal muscle. The task of discerning muscle
fibers from other cells and fascia in images of muscle cross
sections and fascia is commonly performed in muscle stud-
ies. Simple thresholding is still used, but more advanced
methods such as active contours have recently been pro-
posed. Image areas from skeletal muscle cross sections have
been classified for semiautomatic or automatic computa-
tion of muscle fiber areas, perimeter and diameter, using
active contours alone (Klemenci¢ et al., 1998), or in combi-
nation with texture and color features (Kim et al., 2007).
Advanced edge-detection methods have also be used to
automate this computation on images of skeletal muscle
cross sections (Tzekis et al., 2007). Studies involving longi-
tudinal images of muscle fibers have also taken advantage of
automated image analysis methods. Computation of sarco-
mere length has been automated using edge-detection algo-
rithms (Infantolino et al., 2010) or the FFT (Gannier et al.,
1993; Helmes et al., 1999; Weiwad et al., 2000; Ockleford
et al., 2002). The FFT has also been used to calculate
myofibrillar shift from longitudinal images of skeletal mus-
cle fibers (Shah & Lieber, 2003), but to our knowledge, this
is the first time FFT-derived metrics and other textural
measures were used to perform regional classification within
such images. Our classification method could prove time
saving in future experiments investigating changes in sarco-
mere length, myofibrillar phase shift, and other measures
caused by manipulation of specimens prepared in a similar
manner. This classification method can also be used in
other fields to select for image areas of high quality and a
certain periodicity. The approach simply requires creation
of a series of metrics from an ROI and “training” against
expertly classified ROIs. This approach may therefore prove
generally useful in the study of the dynamic properties of
cytoskeletal structures.

SUMMARY

Here we describe a method that provides objective classifi-
cation of ROIs of striated cytoskeletal structures into usable
and unusable categories. This method uses a boosted neural
network, which is trained on researchers’ decisions using
textural parameters from the images themselves. Together
these methods allow efficient, objective, and accurate classi-
fication of image regions and allow us to overcome some of
the difficulties of analyzing confocal images of transfected
skeletal muscle tissue.
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