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Architectural and Biochemical Adaptations in
Skeletal Muscle and Bone Following Rotator
Cuff Injury in a Rat Model
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Investigation performed at the University of California San Diego, La Jolla, California, and Washington University, St. Louis, Missouri

Background: Injury to the rotator cuff can cause irreversible changes to the structure and function of the associated
muscles and bones. The temporal progression and pathomechanisms associated with these adaptations are unclear. The
purpose of this study was to investigate the time course of structural muscle and osseous changes in a rat model of a
massive rotator cuff tear.

Methods: Supraspinatus and infraspinatus muscle architecture and biochemistry and humeral and scapular morpho-
logical parameters were measured three days, eight weeks, and sixteen weeks after dual tenotomy with and without
chemical paralysis via botulinum toxin A (BTX).

Results: Muscle mass and physiological cross-sectional area increased over time in the age-matched control animals,
decreased over time in the tenotomy+BTX group, and remained nearly the same in the tenotomy-alone group. Tenotomy+
BTX led to increased extracellular collagen in the muscle. Changes in scapular bone morphology were observed in both
experimental groups, consistent with reductions in load transmission across the joint.

Conclusions: These data suggest that tenotomy alone interferes with normal age-related muscle growth. The addition of
chemical paralysis yielded profound structural changes to the muscle and bone, potentially leading to impaired muscle
function, increased muscle stiffness, and decreased bone strength.

Clinical Relevance: Structural musculoskeletal changes occur after tendon injury, and these changes are severely
exacerbated with the addition of neuromuscular compromise.

Peer Review: This article was reviewed by the Editor-in-Chief and one Deputy Editor, and it underwent blinded review by two or more outside experts. It was also reviewed
by an expert in methodology and statistics. The Deputy Editor reviewed each revision of the article, and it underwent a final review by the Editor-in-Chief prior to publication.
Final corrections and clarifications occurred during one or more exchanges between the author(s) and copyeditors.

otator cuff tears are a common degenerative condition

found in approximately 30% of individuals over sixty years

of age' and resulting in pain and loss of functional range of

motion in the shoulder’. While surgical treatment and repair of the

tendon are possible, failure rates have been reported to be high as

20% to 94%, with an increasing prevalence of failure associated
with increases in the size of the tear and the age of the patient™.

Muscle atrophy is associated with chronic, massive ro-

tator cuff tears and has been documented with magnetic

resonance imaging and computed tomography (CT) in hu-
mans and animal models®”. Likewise, decreased muscle
weight, volume, and/or fiber length have been observed in
both animal models and human cadavers with rotator cuff
injuries®”. Previous work with a sheep model demonstrated
a correlation between active force production and muscle
atrophy following rotator cuff injury’. However, muscle mass,
volume, and fiber length are overall poor indicators of
muscle function. In contrast, architectural parameters such
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as physiological cross-sectional area have been previously shown
to be good predictors of muscle force production'. Similarly,
normalized fiber length (i.e., the number of sarcomeres in
series) provides the best estimate of muscle excursion and
velocity'""?. Shorter fibers, which become highly strained and
result in larger forces at the repair site, have been implicated
as one of the obstacles to the repair of massive rotator cuff
tears'>'* and to the achievement of good tendon-to-bone
healing'. Protein level adaptations, such as increased collagen
content’ and adaptations in the intramyocellular protein
titin'®, may also influence muscle stiffness at the time of repair.
Previous work with a rat model of a single rotator cuff tendon
injury demonstrated transient changes in supraspinatus
physiological cross-sectional area and sarcomere number"’.
This finding supports the concept that shorter fibers may lead
to a stiffer muscle because higher sarcomere strains are needed
to achieve anatomical repair. However, to our knowledge, there
have been no quantitative measurements of collagen and titin
in these muscles to support the idea of material property
changes, which would further increase muscle stiffness after
injury.

The contribution of suprascapular neuropathy or neur-
apraxia to muscle trophic changes associated with massive,
retracted tears has not been clearly established. Alterations in
nerve function may influence the clinical deterioration of cuff
muscles and have been associated with massive rotator cuff
tears'®". Similarly, rotator cuff arthropathy in the setting of
chronic, massive rotator cuff tears can lead to alterations in the
osseous architecture of the shoulder (e.g., osteopenia, cartilage
loss, proximal migration of the humeral head, abnormal bone
wear, and osteophyte formation)®. These changes theoretically
may be due to mechanical unloading and/or changes in trophic
factor interactions among bone, muscle, and tendon. We are
not aware of any animal studies assessing osseous architecture
changes in the shoulder following a rotator cuff injury. Al-
though some animal model data suggest that a combined
tendon and nerve injury leads to more muscle changes than
does a tendon injury alone**, to our knowledge no study has
correlated changes in bone and muscle architecture to the se-
verity of tendon and muscle injury.

In the current study, botulinum toxin A (BTX) was used
in conjunction with tendon injury to mimic a chronic, massive
rotator cuff injury leading to severe muscle atrophy. The ob-
jective of the study was to investigate the short-term (three-
day) and long-term (eight and sixteen-week) muscle and bone
adaptations that occur in a rodent model of a massive rotator
cuff tear. Specifically, we focused on muscle structural pa-
rameters that are believed to influence active (contractile) and
passive force generation. We hypothesized that injury to the
rotator cuff would result in radial and longitudinal muscle
atrophy, increased collagen content, and decreased scapular
fossa depth and trabecular number and thickness. We also
hypothesized that these changes would be exacerbated by ad-
ditional BTX injury and chronicity. This information is clinically
useful because a better understanding of the mechanisms by
which rotator cuff muscles and the surrounding bone degenerate

ARCHITECTURAL/BIOCHEMICAL ADAPTATIONS IN MUSCLE AND BONE
AFTER ROTATOR CUFF INJURY IN RAT MODEL

following injury may lead to therapeutic interventions that can
one day improve clinical results following repair.

Materials and Methods
Animal Model and Surgical Methods

ifty-five male Sprague-Dawley rats were used for this study. The animals

were divided into three groups: bilateral dual tenotomy of the supraspinatus
and infraspinatus tendons only (tenotomy-alone group), bilateral dual tenot-
omy of the supraspinatus and infraspinatus tendons with concomitant chem-
ical denervation of the muscles induced with BTX (tenotomy+BTX group),
and age-matched uninjured controls (control group). Following approval from
the university’s Animal Studies Committee, the surgical procedures were per-
formed after induction of anesthesia with isoflurane and a 1% oxygen carrier.
Under sterile conditions, a 2-cm vertical incision was made over the scapulo-
humeral joint and the deltoid was detached from the cranial and lateral aspects
of the acromion with use of electrocautery. The acromion was elevated with use
ofa 3-0 Vicryl (polyglactin) suture passed through the acromial notch to expose
the underlying rotator cuff tendons. The supraspinatus tendon was exposed by
supination of the forearm, and a number-11 blade was used to transect the
supraspinatus tendon at its insertion on the humeral head. The forearm was
then internally rotated 45° to expose the infraspinatus tendon, which was
transected from the humeral head with use of a number-11 blade. Retraction of
the tendons was confirmed visually by the surgeon (C.T.L.). In the tenotomy+BTX
group, BTX diluted in sterile saline solution (~9 U/kg) was injected into
the supraspinatus muscle belly at the time of surgery. In the sixteen-week
tenotomy+BTX group, a second injection of BTX was administered into the
supraspinatus muscle belly at eight weeks postsurgery. No injections were
performed in the tenotomy-alone group. The deltoid and trapezius muscles
were then reattached with use of 3-0 Vicryl suture, and the skin was closed
with staples. Postoperative animal care was administered by an animal care
technician.

Animals were killed at three days, eight weeks, or sixteen weeks after
injury (Table I). At the time of sacrifice, the supraspinatus and infraspinatus
muscles from one shoulder were individually dissected, snap-frozen in liquid
nitrogen, and stored at —80°C for biochemical analysis. In a subset of these
animals, the contralateral shoulder was dissected en bloc and pinned in its
anatomical orientations for evaluation of muscle architecture and bone mor-
phology. All musculature except the supraspinatus and infraspinatus was then
removed, and the shoulders were fixed in 4% paraformaldehyde overnight.
Samples were then stored in 70% ethanol for further analysis of muscle ar-
chitecture and bone morphology measurements. Because the osseous anatomy
was disrupted on dissection (e.g., the acromion or scapular spine broke), eight
shoulders were excluded from bone morphometric analyses (Table I).

Muscle Architecture

Specimens were sharply dissected from the scapulae to isolate the supraspinatus
and infraspinatus muscles and were stored in phosphate-buffered saline solu-
tion. Muscle specimens were removed from the saline solution, gently blotted
dry, and weighed. Muscle fiber sarcomere length, normalized muscle fiber
length, and physiological cross-sectional area were measured as previously
described for rat rotator cuff muscles'’. Fiber length was normalized to a
sarcomere length of 2.4 um, which represents the optimum sarcomere length
for rat muscle based on actin and myosin filament lengths™.

Bone Morphology

Following fixation, micro-CT (SkyScan 1076; SkyScan, Aartselaar, Belgium)
was performed with a cone beam, 36-pum voxel resolution, 45-kV (177-pA)
energy, standard resolution, and 300-msec integration time. Bone morpho-
metric parameters, including total volume, bone volume fraction (bone volume
divided by total volume), trabecular thickness, trabecular number, and tra-
becular spacing, were measured in the humeral head with use of Scanco
Medical software (Briittisellen, Switzerland). Bone architecture (scapular fossa
depth) was measured with use of OsiriX 32-bit imaging software (open source
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TABLE | Number of Animals and Number of Shoulder Specimens Used in Each Analysis

No. of Shoulder Specimens Used in Analysis
Total No. of Animals Biochemistry Architecture Bone Morphology

3 days

Control 6 6 6 6

Tenotomy 6 6 4 3

Tenotomy+BTX 5 5 4 4
8 weeks

Control 6 6 6 6

Tenotomy 6 6 5 5

Tenotomy+BTX 8 8 8 5
16 weeks

Control 6 6 6 4

Tenotomy 6 6 5 6

Tenotomy+BTX 6 6 6 4

version 5.5). Following imaging, specimens were stored in 70% ethanol at 4°C
for further analysis.

Titin Molecular Weight Determination

Titin molecular weight was quantified with use of a previously developed
method utilizing sodium dodecyl sulfate-vertical agarose gel electrophoresis
(SDS-VAGE)*°. Details of the method are available in the Appendix.

Collagen Content

The hydroxyproline content was measured with a modification of a previously
published protocol27 to determine the collagen content (g collagen/mg wet
weight tissue) of the supraspinatus and infraspinatus muscles. The measured
hydroxyproline content was used to calculate the collagen amount by using the
constant 7.46, which corresponds to the average number of hydroxyproline
residues in a collagen molecule™. Details of the methods are available in the
Appendix.

Statistical Analysis

After the data were screened for normality and homogeneity of variances, two-
way analysis of variance was used to compare groups for each dependent
measure. Post-hoc Sidak tests were performed to identify specific group dif-
ferences. Statistical analyses were performed with use of SPSS software 20.0
(IBM, Armonk, New York) and Prism 6.0b (GraphPad, La Jolla, California).
Significance was set at p < 0.05, and all data are presented as the mean and
standard deviation.

Source of Funding

The sources of funding for this study were National Institutes of Health (NIH)
grants RO1 AR057836, R24 HD050837, P30 AR057235, and T32 AR060712.
The authors have no financial conflicts of interest related to this project.

Results

Muscle Architecture

As expected, the control animals had significantly larger su-
praspinatus (p = 0.001) and infraspinatus (p < 0.001) muscle

mass at eight weeks compared with the muscle mass at three

days. The mass of both muscles was also increased at sixteen

weeks, compared with the three-day value, in the control group

(p < 0.001) (Figs. 1-A and 1-B). Tenotomy alone did not yield

a significant reduction in supraspinatus or infraspinatus muscle
mass over time, but these muscles were significantly smaller than
the control muscles at sixteen weeks (p < 0.001). In contrast, the
addition of BTX produced significant reductions in supraspi-
natus (p = 0.013) and infraspinatus (p = 0.034) muscle mass at
eight weeks, as well as at sixteen weeks (p < 0.001), compared
with the muscle mass at three days. Because of this active atro-
phy, the muscles in the tenotomy+BTX group had a signifi-
cantly reduced mass compared with those in the controls (p <
0.001 for all comparisons) and compared with those in the
tenotomy-alone group at eight weeks (p < 0.001 for the su-
praspinatus and p = 0.002 for the infraspinatus) and at sixteen
weeks (p < 0.001).

At three days, sarcomere length was significantly reduced,
compared with the length in the control group, in the supra-
spinatus in both tenotomy groups (with and without BTX) (p <
0.01) and in the infraspinatus in the tenotomy+BTX group (p =
0.003) (Figs. 1-C and 1-D). These findings were consistent with
muscle retraction. However, in both injury groups the sarcomere
length recovered by eight weeks, and in the tenotomy+BTX
group it slightly exceeded the control value at sixteen weeks.
These data confirm the initial tenotomy-induced retraction of
the muscles and suggest adaptation of longitudinal sarcomere
lengths over time.

The normalized fiber length in both muscles remained
constant over time in the control group. In the tenotomy+BTX
group, the normalized fiber length was reduced in both the
supraspinatus (p = 0.044) and the infraspinatus (p = 0.006),
compared with the values in the control group, at sixteen weeks
and in the infraspinatus at eight weeks (p = 0.025). The nor-
malized muscle fiber length in the tenotomy-alone group be-
came, on average, smaller than that in the control group over
time, but the difference reached significance (p = 0.020) only in
the infraspinatus muscle at eight weeks (Figs. 1-E and 1-F).

The physiological cross-sectional area followed a pattern
similar to that of the muscle mass. In the control group, the



568

THE JOURNAL OF BONE & JOINT SURGERY - JBJS.ORG ARCHITECTURAL/BIOCHEMICAL ADAPTATIONS IN MUSCLE AND BONE
VOLUME 97-A - NUMBER 7 - APRIL 1, 2015 AFTER ROTATOR CUFF INJURY IN RAT MODEL
Supraspinatus Infraspinatus
= O— T - v

1.0+ —r—0 —r
0.9
~~ (.84 —_
) 0.7 ()]
0.64
0w 4 )]
0.54
wn wn
@ 049 ]
= o7 =
0.24
0.14
0.0 A d Py
& > >
S&F S&G S o8
,,po T o ‘S&&"e _ag«-o '\@‘«"@

&
M M ,3;*”'

CE D =
s g
< <
£ 2
- ke
5 5
£ =
(@] (@]
(dp] w
E &
E E
= =
L LL
| |
G H 0.84 O—— , '
C(l-\ CGE.\ 0.7 —r—0
0.6
5 O o5
0.4
% a(‘_) 0.3
O QO 021
(A 0. 0.1

S A SAGF A
& %",éd' S & é*,;%(*
L S

g G,i" K3 &

Fig. 1

Afchitectural measurements of the supraspinatus and infraspinatus muscles indicate that the mass and physiological cross-sectional
area were progressively reduced in the tenotomy+BTX group. Muscle mass (Figs. 1-A and 1-B), sarcomere length (Figs. 1-C and 1-D),
normalized fiber length (LFN) (Figs. 1-E and 1-F), and physiological cross-sectional area (PCSA) (Figs. 1-G and 1-H) are shown for
each group at each time point. The horizontal lines without circles at the tops of the panels indicate significant differences (p < 0.05)
between all groups with a vertical tick mark. The horizontal lines with circles indicate significant differences (p < 0.05) between the
group identified with the circle and the groups identified with a vertical tick mark but no significant difference between the groups
identified with the tick mark. Cntrl = control, T = tenotomy, BTX = botulinum toxin A, 3d = three-day, 8wk = eight-week, and

16wk = sixteen-week.
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Representative micro-CT images depicting axial (Fig. 2-A), sagittal (Fig. 2-B), and coronal (Fig. 2-C) views of the scapula. The sagittal oblique view
(Fig. 2-B) was used to measure the infraspinatus fossa depth («) and supraspinatus fossa depth (). At eight and sixteen weeks, the supraspinatus
and infraspinatus fossa depths were reduced, compared with the control values, in the tenotomy-alone and tenotomy+BTX groups and the fossa
depths in the tenotomy+BTX group were significantly reduced compared with those in the tenotomy-alone group (Figs. 2-D and 2-E). The horizontal lines
without circles at the tops of the panels indicate significant differences (p < 0.05) between all groups with a vertical tick mark. The horizontal lines
with circles indicate significant differences (p < 0.05) between the group identified with the circle and the groups identified with a vertical tick

mark but no significant difference between the groups identified with the tick mark. Cntrl = control, T =tenotomy, BTX = botulinum toxin A, 3d = three-day,

8wk = eight-week, and 16wk = sixteen-week.

physiological cross-sectional area was significantly increased
at eight weeks in both the supraspinatus (p = 0.005) and the
infraspinatus (p = 0.001) and at sixteen weeks in both muscles
(p < 0.001) compared with the values at three days (Figs. 1-G
and 1-H). Tenotomy alone did not yield significant reductions
in the physiological cross-sectional area over time, but these
values remained constant so the values for both the supraspi-
natus (p = 0.001) and the infraspinatus (p = 0.015) were sig-
nificantly lower than the control values by sixteen weeks.
However, the physiological cross-sectional areas of the supra-
spinatus and infraspinatus in the tenotomy+BTX group were
significantly lower than the control or tenotomy-alone values
at eight (p < 0.001) and sixteen (p < 0.001) weeks.

Bone Morphology

Bone architectural and morphometric parameters were eval-
uated with use of axial, sagittal, and coronal views of the
scapula and humeral head (Figs. 2-A, 2-B, and 2-C). In the
control animals, the supraspinatus and infraspinatus fossa
depths were increased at eight weeks (p < 0.001) and sixteen
weeks (p < 0.001) compared with the depths at three days
(Figs. 2-D and 2-E). Tenotomy alone did not significantly
decrease fossa depth over time; however, there were significant
decreases, compared with the control values, in the fossa depths
at eight weeks (p = 0.013 for the supraspinatus fossa and p =
0.005 for the infraspinatus fossa) and at sixteen weeks (p <
0.001 and p = 0.004, respectively) in the tenotomy-alone group.
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Humeral head measurements for bone volume fraction (bone volume [BV]/total volume [TV]) (Fig. 3-A), trabecular spacing (TbSp) (Fig. 3-B), trabecular
thickness (TbTh) (Fig. 3-C), and trabecular number (TbN) (Fig. 3-D). The bone volume fraction was significantly reduced in the tenotomy+BTX group
compared with the tenotomy-alone group at eight weeks, while trabecular spacing, trabecular thickness, and trabecular number were uniformly

changed in both injury groups. The horizontal lines without circles at the tops of the panels indicate significant differences (p < 0.05) between all

groups with a vertical tick mark. The horizontal lines with circles indicate significant differences (p < 0.05) between the group identified with the
circle and the groups identified with a vertical tick mark but no significant difference between the groups identified with the tick mark. Cntrl = control,
T = tenotomy, BTX = botulinum toxin A, 3d = three-day, 8wk = eight-week, and 16wk = sixteen-week.

Scapulae from the tenotomy+BTX group demonstrated sig-
nificant reductions in fossa depth at eight weeks and sixteen
weeks compared with those in the control and tenotomy-alone
groups (p < 0.001 for all comparisons). These data closely matched
the changes in muscle mass.

The humeral head bone volume fraction (bone volume
divided by total volume) was significantly reduced, compared
with the control value, in the tenotomy-alone group (p = 0.002)
and tenotomy+BTX group (p < 0.001) at eight weeks and in
both groups (p < 0.001) at sixteen weeks (Fig. 3-A). These
changes tracked the changes in muscle mass, increasing over
time in the control animals, remaining nearly constant over time
in the tenotomy-alone group, and decreasing over time in the
tenotomy+BTX group. Trabecular spacing was increased at
eight weeks (p = 0.033) and sixteen weeks (p = 0.005), compared
with the value at three days, only in the tenotomy+BTX group
(Fig. 3-B). Tenotomy+BTX also led to significantly greater
trabecular spacing compared with that in the control group at
eight weeks (p = 0.001) and sixteen weeks (p = 0.006).

In the control group, trabecular thickness increased over
time, with a higher value at eight weeks (p = 0.001) and sixteen
weeks (p < 0.001) than at three days, whereas trabecular thick-
ness remained nearly constant over time in both injury groups

(Fig. 3-C). There was a significant reduction in trabecular
thickness, compared with the control value, at eight weeks in the
tenotomy-alone group (p = 0.016) and the tenotomy+BTX
group (p < 0.001) and at sixteen weeks in the tenotomy-alone
group (p =0.001) and the tenotomy+BTX group (p < 0.001),
but the injury groups did not differ significantly from each other.
The trabecular number was also significantly reduced, compared
with the control value, at eight weeks and sixteen weeks in both
the tenotomy-alone (p < 0.05) and the tenotomy+BTX (p <
0.001) group (Fig. 3-D).

Titin Molecular Weight Determination

Titin molecular weight was significantly reduced in both the
supraspinatus (p = 0.017) and the infraspinatus (p = 0.011)
muscles at eight weeks in the tenotomy-alone group compared
with the values in the control group (Figs. 4-A and 4-B). These
reductions were also observed in the supraspinatus muscle at
three days (p = 0.044). The addition of BTX had no further
effect on titin molecular weight.

Collagen Content
The most profound increases in muscle collagen content relative
to the controls were observed in the tenotomy+BTX group at
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Titin molecular weight (MW) was decreased in the supraspinatus (Fig. 4-A) and infraspinatus (Fig. 4-B) muscles following tenotomy, compared with
the control values, but with different time courses. The addition of nerve injury (tenotomy+BTX) did not yield any further change in titin. Collagen content
was increased in the supraspinatus (Fig. 4-C) at eight weeks and sixteen weeks in the tenotomy+BTX group, compared with the control values,
and similar changes were observed in the infraspinatus (Fig. 4-D). Tenotomy alone increased collagen content in the infraspinatus muscle at eight
weeks, but this did not remain significant at the sixteen-week time point. The horizontal lines without circles at the tops of the panels indicate significant
differences (p < 0.05) between all groups with a vertical tick mark. The horizontal lines with circles indicate significant differences (p < 0.05)

between the group identified with the circle and the groups identified with a vertical tick mark but no significant difference between the groups identified
with the tick mark. Cntrl = control, T = tenotomy, BTX = botulinum toxin A, 3d = three-day, 8wk = eight-week, and 16wk = sixteen-week.

eight weeks (p = 0.005 for the supraspinatus and p < 0.001 for the
infraspinatus) and sixteen weeks (p < 0.001 for both muscles)
(Figs. 4-C and 4-D). Although there was some increase in the
infraspinatus collagen content in the tenotomy-alone group
compared with the control value at eight weeks (p = 0.034), this
increase did not remain significant at the sixteen-week time point.

Discussion

he purpose of this study was to characterize adaptations in

muscle and bone architecture as well as muscle biochem-
istry in response to a massive rotator cuff tear with and without
muscle paralysis. Tenotomy with muscle paralysis in our rat
model resulted in significant and progressive radial muscle
atrophy (a decrease in physiological cross-sectional area) over
sixteen weeks. Tenotomy with muscle paralysis induced sub-
stantially more severe muscle changes than tenotomy alone, a
finding that is consistent with previous rodent studies®. In fact,
tenotomy alone did not yield significant decreases in muscle
dimensions over time. However, when compared with age-
matched controls, the tenotomized muscles were significantly
smaller, indicating that they had failed to grow normally over

time. Tenotomy with muscle paralysis resulted in only mild
longitudinal muscle atrophy (reductions in muscle fiber length),
at the later time points, compared with the control values. This
finding may be related to the fact that sarcomere lengths were
only slightly reduced three days after the tenotomy, indicating
that muscle retraction, although present, was mild. These find-
ings agree with previous observations of only small decreases
in muscle dimensions following single-muscle (supraspina-
tus) tenotomies in the rats'” and with observations in human
cadaver shoulders with rotator cuff tears’. Taken together, these
changes suggest severe impairment of muscle force production
and more minor impairment of muscle excursion and velocity.
These data do not support the idea that the high passive tensions
observed during anatomical surgical reconstruction result
from higher strains in muscles with shorter fibers. Future studies
should be undertaken to investigate whether these muscle
adaptations are reversible following tendon repair and/or
rehabilitation.

Interestingly, changes in humeral head trabecular ar-
chitecture were consistent with muscle unloading in both in-
jury groups, while scapular fossa depth closely followed muscle
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architectural changes, which differed between the two injury
groups. For example, decreased trabecular thickness and tra-
becular number were observed in both injury groups, sug-
gesting that humeral head bone morphology is less robust
when the supraspinatus and infraspinatus muscles are no
longer connected to the humerus (and therefore no longer
transmitting force to the humerus). In contrast, scapular fossa
depths were more severely reduced in the tenotomy+BTX
group compared with the tenotomy-alone group, and these
differences tracked the changes measured in muscle mass and
volume. A possible explanation for this differential osseous
effect could be cross-talk between muscle and bone via para-
crine factors leading to osseous adaptations that depend on the
severity of the muscle degeneration®. This paracrine-mediated
hypothesis warrants further experiments.

Also interestingly, small but distinct biochemical changes
were observed in both injury groups and both muscles. Titin is
a large intracellular structural protein in the sarcomere that has
been implicated in determining the stiffness of single muscle
fibers'®. Decreases in molecular weight would be expected to
increase stiffness at the single-fiber (cell) level'. These changes
in titin molecular weight suggest that titin molecular weight
may be regulated, at least in part, by the absence of mechanical
loading or by changes in muscle fiber length, as would result
from detachment of tendon from bone. Although it is appealing
to speculate that muscle retraction would lead to shorter sar-
comeres and therefore reduced titin length (molecular weight),
our sarcomere data do not support this idea.

In contrast to tenotomy alone, the addition of muscle
paralysis led to progressive increases in muscle collagen con-
tent, which suggests that proper innervation has a unique role
in the prevention of rotator cuff muscle fibrosis. Increases in
collagen content may also increase muscle stiffness™®, but this
simple correlation should be interpreted with caution, as the
relationship between muscle collagen content and stiffness is
weak™. Nevertheless, the sources of increased muscle stiffness
after rotator cuff injury are a major focus of current work in
this area, as increased muscle stiffness has been implicated in
rotator cuff repairs that are difficult to perform in human pa-
tients. Rodent model systems may allow further exploration of
the molecular mechanisms and sources of fibrosis, despite the
fact that they do not exactly recapitulate the human condition.

The current study has several limitations. First, tenotomy
in the animal model does not mimic the magnitude of muscle
retraction observed in complete human rotator cuff tears,
potentially mitigating longitudinal atrophy of the muscles.
Second, the biochemical changes observed in the muscles im-
ply passive stiffness changes at multiple size scales (titin indi-
cates increased stiffness at the single-cell size scale and
increased collagen content indicates increased stiffness at the
muscle-fiber-bundle and whole-muscle size scales). However,
we did not directly measure muscle passive mechanical changes
implied by the biochemical findings. Third, the use of BTX in
this model to exacerbate muscle atrophy may not directly re-
capitulate the unloading conditions seen in human patients.
In contrast to neurotomy, which completely disrupts nerve
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structure and function and is used in some rotator cuff injury
models®*"?, injection of BTX temporarily disrupts cholinergic
communication between the nerve and muscle (chemical de-
nervation) while preserving noncholinergic communication.
For this reason, it could be argued that neurotomy does not
recapitulate the human condition as well as BTX, although
neither injury is a compression neuropathy model. However,
both models yield severe atrophy similar to what is observed in
humans®*'. Finally, active mechanics were not tested in this
study; thus, we are unable to quantify the physiological force-
producing capacity of the muscle implied by the decreased
physiological cross-sectional area.

In conclusion, these data suggest that the addition of muscle
paralysis to massive tendon tears yields profound structural
changes to the muscle and bone. These changes would presum-
ably impair muscle active force-generating capacity, muscle stiff-
ness, and bone strength. Further study is required to assess the
mechanisms associated with the changes and to reconcile these
findings with those observed in patients. The profound effects
of advanced atrophy in this study highlight the importance of
diagnosing and treating rotator cuff tears at risk for developing
chronic degenerative changes before advanced changes occur.
Further research is needed to understand the mechanisms of (1)
aggressive muscle atrophy and (2) muscle-bone interactions un-
der conditions of combined tendon and nerve injury.

Appendix

@ A detailed description of the methods used to determine
titin molecular weight and collagen content is available

with the online version of this article as a data supplement at

jbjs.org. m

Note: The authors acknowledge the technical support of Ki-Seok Lee, MD.
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