In vivo supraspinatus muscle contractility and architecture in rabbit

Hyman SA, Norman MB, Dorn SN, Bremner SN, Esparza MC, Lieber RL, Ward SR.
J Appl Physiol, 2020 129(6):1405-1412. Epub 2020 Oct 8.

Abstract:

The rotator cuff (RC) muscles are crucial in moving and stabilizing the glenohumeral joint, and tears can be functionally devastating. Chronic fatty and fibrotic muscle changes, which are nonresponsive to surgical tendon repair, are a focus of contemporary research. The rabbit model recapitulates key biological features of human RC tears, but function and physiology are poorly characterized; limited force and stress data are inconsistent with literature norms in other mammalian species. Here, we present an improved method to assess the physiology of the rabbit supraspinatus muscle (SSP), and we report values for healthy SSP architecture and physiology. Using female New Zealand White Rabbits (n = 6) under 2% isoflurane anesthesia, we surgically isolated the SSP and maximum isometric force measured at 4-6 muscle lengths. Architectural analysis was performed, and maximum isometric stress was computed. Whole muscle length-tension curves were generated using architectural measurements to compare experimental physiology to theoretical predictions. Maximum isometric force (80.87 ± 5.58 N) was dramatically greater than previous reports (11.06 and 16.1 N; P < 0.05). Architectural measurement of fiber length (34.25 ± 7.18 mm), muscle mass (9.9 ± 0.93 g), pennation angle (23.67 ± 8.32°), and PCSA (2.57 ± 0.20 cm2) were consistent with prior literature. Isometric stress (30.5 ± 3.07 N/cm2) was greater than previous reports of rabbit SSP (3.10 and 4.51 N/cm2), but similar to mammalian skeletal muscles (15.7-30.13 N/cm2). Previous studies underestimated peak force by ∼90%, which has profound implications for interpreting physiological changes as a function of disease state. The data that are presented here enable understanding the physiological implications of disease and repair in the RC of the rabbit.

NEW & NOTEWORTHY: We introduce an improved method to assess rabbit supraspinatus muscle physiology. Maximum isometric force measured for the rabbit supraspinatus was dramatically greater than previous reports in the literature. Consequently, the isometric contractile stress reported is almost 10 times greater than previous reports of rabbit supraspinatus, but similar to available literature of other mammalian skeletal muscle. We show that previous reports of peak supraspinatus isometric force were subphysiological by ∼90.

Full text (pdf)